Tolley Nicholas, Rodrigues Pedro L C, Gramfort Alexandre, Jones Stephanie
Department of Neuroscience, Brown University, Providence, RI, United States.
Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France.
bioRxiv. 2023 Apr 17:2023.04.17.537118. doi: 10.1101/2023.04.17.537118.
Biophysically detailed neural models are a powerful technique to study neural dynamics in health and disease with a growing number of established and openly available models. A major challenge in the use of such models is that parameter inference is an inherently difficult and unsolved problem. Identifying unique parameter distributions that can account for observed neural dynamics, and differences across experimental conditions, is essential to their meaningful use. Recently, simulation based inference (SBI) has been proposed as an approach to perform Bayesian inference to estimate parameters in detailed neural models. SBI overcomes the challenge of not having access to a likelihood function, which has severely limited inference methods in such models, by leveraging advances in deep learning to perform density estimation. While the substantial methodological advancements offered by SBI are promising, their use in large scale biophysically detailed models is challenging and methods for doing so have not been established, particularly when inferring parameters that can account for time series waveforms. We provide guidelines and considerations on how SBI can be applied to estimate time series waveforms in biophysically detailed neural models starting with a simplified example and extending to specific applications to common MEG/EEG waveforms using the the large scale neural modeling framework of the Human Neocortical Neurosolver. Specifically, we describe how to estimate and compare results from example oscillatory and event related potential simulations. We also describe how diagnostics can be used to assess the quality and uniqueness of the posterior estimates. The methods described provide a principled foundation to guide future applications of SBI in a wide variety of applications that use detailed models to study neural dynamics.
生物物理细节丰富的神经模型是研究健康和疾病状态下神经动力学的有力技术,现有越来越多已建立且可公开获取的模型。使用此类模型的一个主要挑战在于参数推断本质上是一个困难且尚未解决的问题。识别能够解释观察到的神经动力学以及不同实验条件下差异的独特参数分布,对于它们的有意义使用至关重要。最近,基于模拟的推断(SBI)已被提出作为一种在详细神经模型中进行贝叶斯推断以估计参数的方法。SBI通过利用深度学习的进展来进行密度估计,克服了无法获得似然函数这一挑战,而似然函数严重限制了此类模型中的推断方法。虽然SBI带来的重大方法学进展很有前景,但将其应用于大规模生物物理细节丰富的模型具有挑战性,且尚未建立相关方法,特别是在推断能够解释时间序列波形的参数时。我们提供了关于如何将SBI应用于在生物物理细节丰富的神经模型中估计时间序列波形的指南和注意事项,首先从一个简化示例开始,然后使用人类新皮质神经求解器的大规模神经建模框架扩展到对常见MEG/EEG波形的特定应用。具体而言,我们描述了如何估计和比较示例振荡和事件相关电位模拟的结果。我们还描述了如何使用诊断方法来评估后验估计的质量和唯一性。所描述的方法为指导SBI在广泛使用详细模型研究神经动力学的各种应用中的未来应用提供了一个有原则的基础。