Suppr超能文献

使用深度神经密度估计器对癫痫生成动态网络模型进行摊销贝叶斯推断。

Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators.

机构信息

Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.

Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Epileptology Department, and Clinical Neurophysiology Department, Assistance Publique des Hôpitaux de Marseille, Marseille, France.

出版信息

Neural Netw. 2023 Jun;163:178-194. doi: 10.1016/j.neunet.2023.03.040. Epub 2023 Mar 31.

Abstract

Whole-brain modeling of epilepsy combines personalized anatomical data with dynamical models of abnormal activities to generate spatio-temporal seizure patterns as observed in brain imaging data. Such a parametric simulator is equipped with a stochastic generative process, which itself provides the basis for inference and prediction of the local and global brain dynamics affected by disorders. However, the calculation of likelihood function at whole-brain scale is often intractable. Thus, likelihood-free algorithms are required to efficiently estimate the parameters pertaining to the hypothetical areas, ideally including the uncertainty. In this study, we introduce the simulation-based inference for the virtual epileptic patient model (SBI-VEP), enabling us to amortize the approximate posterior of the generative process from a low-dimensional representation of whole-brain epileptic patterns. The state-of-the-art deep learning algorithms for conditional density estimation are used to readily retrieve the statistical relationships between parameters and observations through a sequence of invertible transformations. We show that the SBI-VEP is able to efficiently estimate the posterior distribution of parameters linked to the extent of the epileptogenic and propagation zones from sparse intracranial electroencephalography recordings. The presented Bayesian methodology can deal with non-linear latent dynamics and parameter degeneracy, paving the way for fast and reliable inference on brain disorders from neuroimaging modalities.

摘要

癫痫的全脑建模将个性化的解剖学数据与异常活动的动力学模型相结合,以生成在脑成像数据中观察到的时空癫痫发作模式。这样的参数模拟器配备了随机生成过程,该过程本身为受疾病影响的局部和全局大脑动力学的推断和预测提供了基础。然而,全脑尺度的似然函数的计算通常是难以处理的。因此,需要似然自由算法来有效地估计假设区域的参数,理想情况下包括不确定性。在这项研究中,我们引入了用于虚拟癫痫患者模型的基于模拟的推理(SBI-VEP),从而能够从全脑癫痫模式的低维表示中摊销生成过程的近似后验。用于条件密度估计的最先进的深度学习算法被用于通过一系列可逆变换来轻松检索参数和观察之间的统计关系。我们表明,SBI-VEP 能够有效地从稀疏的颅内脑电图记录中估计与致痫区和传播区范围相关的参数的后验分布。所提出的贝叶斯方法可以处理非线性潜在动力学和参数退化,为从神经影像学模式快速可靠地推断大脑疾病铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验