Suppr超能文献

基于高速现场深度学习的 FFR-CT 算法:以血管造影为参考标准的评估。

High-Speed On-Site Deep Learning-Based FFR-CT Algorithm: Evaluation Using Invasive Angiography as the Reference Standard.

机构信息

Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, Zurich 8091, Switzerland.

GE Research, Schenectady, NY.

出版信息

AJR Am J Roentgenol. 2023 Oct;221(4):460-470. doi: 10.2214/AJR.23.29156. Epub 2023 May 3.

Abstract

Estimation of fractional flow reserve from coronary CTA (FFR-CT) is an established method of assessing the hemodynamic significance of coronary lesions. However, clinical implementation has progressed slowly, partly because of off-site data transfer with long turnaround times for results. The purpose of this study was to evaluate the diagnostic performance of FFR-CT computed on-site with a high-speed deep learning-based algorithm with invasive hemodynamic indexes as the reference standard. This retrospective study included 59 patients (46 men, 13 women; mean age, 66.5 ± 10.2 years) who underwent coronary CTA (including calcium scoring) followed within 90 days by invasive angiography with invasive fractional flow reserve (FFR) and/or instantaneous wave-free ratio measurements from December 2014 to October 2021. Coronary artery lesions were considered to have hemodynamically significant stenosis in the presence of invasive FFR of 0.80 or less and/or instantaneous wave-free ratio of 0.89 or less. A single cardiologist evaluated the CTA images using an on-site deep learning-based semiautomated algorithm entailing a 3D computational flow dynamics model to determine FFR-CT for coronary artery lesions detected with invasive angiography. Time for FFR-CT analysis was recorded. FFR-CT analysis was repeated by the same cardiologist in 26 randomly selected examinations and by a different cardiologist in 45 randomly selected examinations. Diagnostic performance and agreement were assessed. A total of 74 lesions were identified with invasive angiography. FFR-CT and invasive FFR had strong correlation ( = 0.81) and, in Bland-Altman analysis, bias of 0.01 and 95% limits of agreement of -0.13 to 0.15. FFR-CT had AUC for hemodynamically significant stenosis of 0.975. At a cutoff of 0.80 or less, FFR-CT had 95.9% accuracy, 93.5% sensitivity, and 97.7% specificity. In 39 lesions with severe calcifications (≥ 400 Agatston units), FFR-CT had AUC of 0.991 and at a cutoff of 0.80, 94.7% sensitivity, 95.0% specificity, and 94.9% accuracy. Mean analysis time per patient was 7 minutes 54 seconds. Intraobserver agreement (intraclass correlation coefficient, 0.85; bias, -0.01; 95% limits of agreement, -0.12 and 0.10) and interobserver agreement (intraclass correlation coefficient, 0.94; bias, -0.01; 95% limits of agreement, -0.08 and 0.07) were good to excellent. A high-speed on-site deep learning-based FFR-CT algorithm had excellent diagnostic performance for hemodynamically significant stenosis with high reproducibility. The algorithm should facilitate implementation of FFR-CT technology into routine clinical practice.

摘要

从冠状动脉 CT 血管造影(CTA)中估算分流量储备(FFR-CT)是评估冠状动脉病变血流动力学意义的一种成熟方法。然而,由于需要远程传输数据,结果的周转时间较长,其临床应用进展缓慢。本研究旨在评估一种基于高速深度学习的算法,对冠状动脉 CTA 进行现场计算,并以有创血流动力学指标作为参考标准,其对诊断性能的影响。本回顾性研究纳入了 59 名患者(46 名男性,13 名女性;平均年龄 66.5±10.2 岁),这些患者于 2014 年 12 月至 2021 年 10 月期间先行冠状动脉 CTA(包括钙评分)检查,随后在 90 天内行有创血管造影检查,检查中进行了有创的血流储备分数(FFR)和/或瞬时无波比(iFR)测量。当存在有创 FFR 0.80 或更低,或瞬时无波比 0.89 或更低的情况下,认为冠状动脉病变存在血流动力学意义的狭窄。一名介入心脏病专家使用现场基于深度学习的半自动算法评估 CTA 图像,该算法涉及 3D 计算流动力学模型,以确定通过有创血管造影术检测到的冠状动脉病变的 FFR-CT。记录 FFR-CT 分析的时间。同一名介入心脏病专家对 26 次随机选择的检查进行了重复 FFR-CT 分析,对 45 次随机选择的检查由另一名介入心脏病专家进行了重复 FFR-CT 分析。评估了诊断性能和一致性。通过有创血管造影术共发现 74 处病变。FFR-CT 与有创 FFR 具有较强的相关性(r=0.81),在 Bland-Altman 分析中,偏倚为 0.01,95%一致性界限为-0.13 至 0.15。FFR-CT 对血流动力学意义狭窄的 AUC 为 0.975。当截断值为 0.80 或更低时,FFR-CT 的准确率为 95.9%,敏感度为 93.5%,特异性为 97.7%。在 39 处严重钙化(≥400 个 Agatston 单位)的病变中,FFR-CT 的 AUC 为 0.991,当截断值为 0.80 时,其敏感度为 94.7%,特异性为 95.0%,准确率为 94.9%。每位患者的平均分析时间为 7 分 54 秒。观察者内一致性(组内相关系数 0.85;偏倚-0.01;95%一致性界限-0.12 至 0.10)和观察者间一致性(组内相关系数 0.94;偏倚-0.01;95%一致性界限-0.08 至 0.07)均良好至极好。基于高速现场深度学习的 FFR-CT 算法对血流动力学意义狭窄具有极好的诊断性能,且具有很高的可重复性。该算法应有助于将 FFR-CT 技术常规应用于临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验