Suppr超能文献

使用具有伪装物体检测机制的两阶段级联神经网络从PET/CT图像中进行全身肿瘤分割。

Whole-body tumor segmentation from PET/CT images using a two-stage cascaded neural network with camouflaged object detection mechanisms.

作者信息

He Jiangping, Zhang Yangjie, Chung Maggie, Wang Michael, Wang Kun, Ma Yan, Ding Xiaoyang, Li Qiang, Pu Yonglin

机构信息

Department of Electronic Engineering, Lanzhou University of Finance and Economics, Lanzhou, Gansu, China.

Department of Radiology, University of California, San Francisco, California, USA.

出版信息

Med Phys. 2023 Oct;50(10):6151-6162. doi: 10.1002/mp.16438. Epub 2023 May 3.

Abstract

BACKGROUND

Whole-body Metabolic Tumor Volume (MTVwb) is an independent prognostic factor for overall survival in lung cancer patients. Automatic segmentation methods have been proposed for MTV calculation. Nevertheless, most of existing methods for patients with lung cancer only segment tumors in the thoracic region.

PURPOSE

In this paper, we present a Two-Stage cascaded neural network integrated with Camouflaged Object Detection mEchanisms (TS-Code-Net) for automatic segmenting tumors from whole-body PET/CT images.

METHODS

Firstly, tumors are detected from the Maximum Intensity Projection (MIP) images of PET/CT scans, and tumors' approximate localizations along z-axis are identified. Secondly, the segmentations are performed on PET/CT slices that contain tumors identified by the first step. Camouflaged object detection mechanisms are utilized to distinguish the tumors from their surrounding regions that have similar Standard Uptake Values (SUV) and texture appearance. Finally, the TS-Code-Net is trained by minimizing the total loss that incorporates the segmentation accuracy loss and the class imbalance loss.

RESULTS

The performance of the TS-Code-Net is tested on a whole-body PET/CT image data-set including 480 Non-Small Cell Lung Cancer (NSCLC) patients with five-fold cross-validation using image segmentation metrics. Our method achieves 0.70, 0.76, and 0.70, for Dice, Sensitivity and Precision, respectively, which demonstrates the superiority of the TS-Code-Net over several existing methods related to metastatic lung cancer segmentation from whole-body PET/CT images.

CONCLUSIONS

The proposed TS-Code-Net is effective for whole-body tumor segmentation of PET/CT images. Codes for TS-Code-Net are available at: https://github.com/zyj19/TS-Code-Net.

摘要

背景

全身代谢肿瘤体积(MTVwb)是肺癌患者总生存期的独立预后因素。已经提出了用于MTV计算的自动分割方法。然而,现有的大多数针对肺癌患者的方法仅对胸部区域的肿瘤进行分割。

目的

在本文中,我们提出了一种集成了伪装目标检测机制的两阶段级联神经网络(TS-Code-Net),用于从全身PET/CT图像中自动分割肿瘤。

方法

首先,从PET/CT扫描的最大强度投影(MIP)图像中检测肿瘤,并确定肿瘤在z轴上的大致定位。其次,对包含第一步识别出的肿瘤的PET/CT切片进行分割。利用伪装目标检测机制将肿瘤与其具有相似标准摄取值(SUV)和纹理外观的周围区域区分开来。最后,通过最小化包含分割精度损失和类别不平衡损失的总损失来训练TS-Code-Net。

结果

使用图像分割指标,在一个包括480例非小细胞肺癌(NSCLC)患者的全身PET/CT图像数据集上进行五折交叉验证,测试了TS-Code-Net的性能。我们的方法在骰子系数、灵敏度和精度方面分别达到了0.70、0.76和0.70,这证明了TS-Code-Net相对于几种现有的从全身PET/CT图像中分割转移性肺癌的方法具有优越性。

结论

所提出的TS-Code-Net对于PET/CT图像的全身肿瘤分割是有效的。TS-Code-Net的代码可在以下网址获取:https://github.com/zyj19/TS-Code-Net。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验