Suppr超能文献

基于人工智能的交通事故严重程度预测,以提高道路安全和运输效率。

AI-based prediction of traffic crash severity for improving road safety and transportation efficiency.

作者信息

Mostafa Ayman Mohamed, Aldughayfiq Bader, Tarek Mayada, Alaerjan Alaa S, Allahem Hisham, Elbashir Murtada K, Ezz Mohamed, Hamouda Eslam

机构信息

Information Systems Department, College of Computer and Information Sciences, Jouf University, 72388, Sakaka, Saudi Arabia.

Information Systems Department, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Egypt.

出版信息

Sci Rep. 2025 Jul 28;15(1):27468. doi: 10.1038/s41598-025-10970-7.

Abstract

Ensuring safe transportation requires a comprehensive understanding of driving behaviors and road safety to mitigate traffic crashes, reduce risks and enhance mobility. This study introduces an AI-driven machine learning (ML) framework for traffic crash severity prediction, utilizing a large-scale dataset of over 2.26 million records. By integrating human, crash-specific, and vehicle-related factors, the model improves predictive accuracy and reliability. The methodology incorporates feature engineering, clustering techniques such as K-Means and HDBSCAN, with oversampling methods such as RandomOverSampler, SMOTE, Borderline-SMOTE, and ADASYN to address class imbalance, along with Correlation-Based Feature Selection (CFS) and Recursive Feature Elimination (RFE) for optimal feature selection. Among the evaluated classifiers, the Extra Trees (ET Classifier) ensemble model demonstrated superior performance, achieving 96.19% accuracy and an F1-score (macro) of 95.28%, ensuring a well-balanced prediction system. The proposed framework provides a scalable, AI-powered solution for traffic safety, offering actionable insights for intelligent transportation systems (ITS) and accident prevention strategies. By leveraging advanced ML and feature selection techniques, this approach enhances traffic risk assessment and enables data-driven decision-making.

摘要

确保安全运输需要全面了解驾驶行为和道路安全,以减少交通事故、降低风险并提高出行便利性。本研究引入了一种由人工智能驱动的机器学习(ML)框架,用于交通事故严重程度预测,该框架利用了一个包含超过226万条记录的大规模数据集。通过整合人为因素、特定事故因素和车辆相关因素,该模型提高了预测的准确性和可靠性。该方法包括特征工程、K均值和HDBSCAN等聚类技术,以及随机过采样器、SMOTE、Borderline-SMOTE和ADASYN等过采样方法,以解决类别不平衡问题,同时还采用了基于相关性的特征选择(CFS)和递归特征消除(RFE)来进行最优特征选择。在评估的分类器中,Extra Trees(ET分类器)集成模型表现出卓越的性能,准确率达到96.19%,F1分数(宏)为95.28%,确保了一个平衡良好的预测系统。所提出的框架为交通安全提供了一种可扩展的、由人工智能驱动的解决方案,为智能交通系统(ITS)和事故预防策略提供了可操作的见解。通过利用先进的机器学习和特征选择技术,这种方法增强了交通风险评估,并实现了数据驱动的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/165e/12304350/65cd0ffd3aff/41598_2025_10970_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验