School of Public Administration and Policy, Renmin University of China, Beijing, 100872, China.
La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Sci Rep. 2023 May 3;13(1):7213. doi: 10.1038/s41598-023-33014-4.
Further deployment of rooftop solar photovoltaics (PV) hinges on the reduction of soft (non-hardware) costs-now larger and more resistant to reductions than hardware costs. The largest portion of these soft costs is the expenses solar companies incur to acquire new customers. In this study, we demonstrate the value of a shift from significance-based methodologies to prediction-oriented models to better identify PV adopters and reduce soft costs. We employ machine learning to predict PV adopters and non-adopters, and compare its prediction performance with logistic regression, the dominant significance-based method in technology adoption studies. Our results show that machine learning substantially enhances adoption prediction performance: The true positive rate of predicting adopters increased from 66 to 87%, and the true negative rate of predicting non-adopters increased from 75 to 88%. We attribute the enhanced performance to complex variable interactions and nonlinear effects incorporated by machine learning. With more accurate predictions, machine learning is able to reduce customer acquisition costs by 15% ($0.07/Watt) and identify new market opportunities for solar companies to expand and diversify their customer bases. Our research methods and findings provide broader implications for the adoption of similar clean energy technologies and related policy challenges such as market growth and energy inequality.
进一步推广屋顶太阳能光伏 (PV) 取决于降低软性(非硬件)成本——这些软性成本现在比硬件成本更大,且更难降低。这些软性成本的最大部分是太阳能公司为获取新客户而产生的费用。在这项研究中,我们展示了从基于显著性的方法转变为面向预测的模型的价值,以更好地识别 PV 采用者并降低软性成本。我们运用机器学习来预测 PV 的采用者和非采用者,并将其预测性能与逻辑回归进行比较,逻辑回归是技术采用研究中占主导地位的基于显著性的方法。我们的结果表明,机器学习极大地提高了采用预测的性能:预测采用者的真阳性率从 66%提高到 87%,预测非采用者的真阴性率从 75%提高到 88%。我们将这种增强的性能归因于机器学习所包含的复杂变量交互和非线性效应。通过更准确的预测,机器学习能够降低 15%的客户获取成本(0.07 美元/瓦),并为太阳能公司发现新的市场机会,扩大和多样化其客户群。我们的研究方法和发现为类似清洁能源技术的采用以及相关政策挑战(如市场增长和能源不平等)提供了更广泛的启示。