Jobayer Md, Shaikat Md Al Hasan, Naimur Rashid Md, Hasan Md Rakibul
BRAC University, Dhaka 1212, Bangladesh.
Heliyon. 2023 Jun 2;9(6):e16815. doi: 10.1016/j.heliyon.2023.e16815. eCollection 2023 Jun.
Due to the growing demand, assessing performance has become obligatory for photovoltaic (PV) energy harvesting systems. Performance assessment involves estimating different PV system parameters. Traditional ways, such as calculating solar radiation using satellite data and the IV characteristics approach as assessment methods, are no longer reliable enough to provide a reasonable projection of PV system parameters. Estimating system parameters using machine learning (ML) approaches has become a reliable and popular method because of its speed and accuracy. This paper systematically reviewed ML-based PV parameter estimation studies published in the last three years (2020 - 2022). Studies were analyzed using several criteria, including ML algorithm, outcome, experimental setup, sample data size, and error metric. The analysis revealed several interesting factors. The neural network was the most popular ML method (32.55%), followed by random vector functional link (13.95%) and support vector machine (9.30%). Dataset was sourced from hardware tests and computer-based simulations: 66% of the studies used data from only computer simulation, 18% used data from only hardware setup, and the 16% experiments used data from both hardware and simulations to evaluate different system parameters. The top three most commonly used error metrics were root mean square error (29.1%), mean absolute error (17.5%), and coefficient of determination (15.9%). Our systematic review will help researchers assess ML algorithms' projection in PV system parameters estimation. Consequently, scopes shall be created to establish more robust governmental frameworks, expand private financing in the PV industry, and optimize PV system parameters.
由于需求不断增长,对光伏(PV)能量收集系统进行性能评估已成为一项必须开展的工作。性能评估涉及估算不同的光伏系统参数。传统方法,例如使用卫星数据计算太阳辐射以及采用IV特性方法作为评估手段,已不再足够可靠,无法对光伏系统参数进行合理预测。由于其速度和准确性,使用机器学习(ML)方法估算系统参数已成为一种可靠且流行的方法。本文系统回顾了过去三年(2020 - 2022年)发表的基于机器学习的光伏参数估计研究。使用了包括机器学习算法、结果、实验设置、样本数据大小和误差度量等多个标准对研究进行分析。分析揭示了几个有趣的因素。神经网络是最受欢迎的机器学习方法(32.55%),其次是随机向量函数链接(13.95%)和支持向量机(9.30%)。数据集来源于硬件测试和基于计算机的模拟:66%的研究仅使用来自计算机模拟的数据,18%使用仅来自硬件设置的数据,16%的实验使用来自硬件和模拟两者的数据来评估不同的系统参数。最常用的三个误差度量是均方根误差(29.1%)、平均绝对误差(17.5%)和决定系数(15.9%)。我们的系统综述将帮助研究人员评估机器学习算法在光伏系统参数估计中的预测能力。因此,应创造条件来建立更稳健的政府框架,扩大光伏行业的私人融资,并优化光伏系统参数。