Suppr超能文献

通过 RNA 修饰调节表观基因组。

Regulation of the epigenome through RNA modifications.

机构信息

Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Medical and Pharmaceutical Biotechnology Program, IMC University of Applied Sciences, Krems, Austria.

出版信息

Chromosoma. 2023 Sep;132(3):231-246. doi: 10.1007/s00412-023-00794-7. Epub 2023 May 4.

Abstract

Chemical modifications of nucleotides expand the complexity and functional properties of genomes and transcriptomes. A handful of modifications in DNA bases are part of the epigenome, wherein DNA methylation regulates chromatin structure, transcription, and co-transcriptional RNA processing. In contrast, more than 150 chemical modifications of RNA constitute the epitranscriptome. Ribonucleoside modifications comprise a diverse repertoire of chemical groups, including methylation, acetylation, deamination, isomerization, and oxidation. Such RNA modifications regulate all steps of RNA metabolism, including folding, processing, stability, transport, translation, and RNA's intermolecular interactions. Initially thought to influence all aspects of the post-transcriptional regulation of gene expression exclusively, recent findings uncovered a crosstalk between the epitranscriptome and the epigenome. In other words, RNA modifications feedback to the epigenome to transcriptionally regulate gene expression. The epitranscriptome achieves this feat by directly or indirectly affecting chromatin structure and nuclear organization. This review highlights how chemical modifications in chromatin-associated RNAs (caRNAs) and messenger RNAs (mRNAs) encoding factors involved in transcription, chromatin structure, histone modifications, and nuclear organization affect gene expression transcriptionally.

摘要

核苷酸的化学修饰扩展了基因组和转录组的复杂性和功能特性。DNA 碱基的少数修饰是表观基因组的一部分,其中 DNA 甲基化调节染色质结构、转录和共转录 RNA 加工。相比之下,超过 150 种 RNA 的化学修饰构成了表观转录组。核糖核苷修饰包括一系列不同的化学基团,包括甲基化、乙酰化、脱氨、异构化和氧化。这些 RNA 修饰调节 RNA 代谢的所有步骤,包括折叠、加工、稳定性、运输、翻译和 RNA 的分子间相互作用。最初认为仅影响基因表达的转录后调控的各个方面,最近的发现揭示了表观转录组和表观基因组之间的串扰。换句话说,RNA 修饰通过直接或间接影响染色质结构和核组织来反馈到表观基因组以转录调控基因表达。表观转录组通过直接或间接影响参与转录、染色质结构、组蛋白修饰和核组织的因子的编码信使 RNA (mRNA) 和染色质相关 RNA (caRNA) 的化学修饰来实现这一壮举,从而影响基因表达转录。

相似文献

1
Regulation of the epigenome through RNA modifications.
Chromosoma. 2023 Sep;132(3):231-246. doi: 10.1007/s00412-023-00794-7. Epub 2023 May 4.
2
Epigenomics in stress tolerance of plants under the climate change.
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
3
Interplay between m A epitranscriptome and epigenome in cancer: current knowledge and therapeutic perspectives.
Int J Cancer. 2023 Aug 1;153(3):464-475. doi: 10.1002/ijc.34378. Epub 2022 Dec 1.
4
The cardiac methylome: A hidden layer of RNA modifications to regulate gene expression.
J Mol Cell Cardiol. 2021 Mar;152:40-51. doi: 10.1016/j.yjmcc.2020.11.011. Epub 2020 Dec 3.
5
The impact of epitranscriptomic marks on post-transcriptional regulation in plants.
Brief Funct Genomics. 2021 Mar 27;20(2):113-124. doi: 10.1093/bfgp/elaa021.
6
7
Emerging interactions between RNA methylation and chromatin architecture.
Curr Opin Genet Dev. 2024 Dec;89:102270. doi: 10.1016/j.gde.2024.102270. Epub 2024 Oct 18.
8
mA RNA modification in transcription regulation.
Transcription. 2021 Oct;12(5):266-276. doi: 10.1080/21541264.2022.2057177. Epub 2022 Apr 5.
9
Crosstalk between histone/DNA modifications and RNA N-methyladenosine modification.
Curr Opin Genet Dev. 2024 Jun;86:102205. doi: 10.1016/j.gde.2024.102205. Epub 2024 May 21.
10
Metabolic Regulation of the Epitranscriptome.
ACS Chem Biol. 2019 Mar 15;14(3):316-324. doi: 10.1021/acschembio.8b00951. Epub 2019 Feb 1.

引用本文的文献

1
Lifting the veil on tumor metabolism: A GDH1-focused perspective.
iScience. 2025 May 3;28(6):112551. doi: 10.1016/j.isci.2025.112551. eCollection 2025 Jun 20.
2
Epitranscriptomic modifications for enhancing abiotic stress resistance in plants.
Front Plant Sci. 2025 May 23;16:1538664. doi: 10.3389/fpls.2025.1538664. eCollection 2025.
4
FTO controls CD8 T cell survival and effector response by modulating mA methylation of Fas.
Cell Death Dis. 2025 Apr 15;16(1):301. doi: 10.1038/s41419-025-07606-z.
5
Synthesis of Sensitive RNAs Using Fluoride-Cleavable Groups as Linkers and Amino-Group Protection.
Angew Chem Int Ed Engl. 2025 Jun 17;64(25):e202424560. doi: 10.1002/anie.202424560. Epub 2025 Apr 17.
6
Exploring RNA modifications in infectious non-coding circular RNAs.
RNA Biol. 2025 Dec;22(1):1-9. doi: 10.1080/15476286.2025.2459039. Epub 2025 Feb 11.
7
Ultrastructural assessment of human periodontal ligament fibroblast interaction with bovine pericardium membranes: An study.
Histol Histopathol. 2025 Aug;40(8):1185-1194. doi: 10.14670/HH-18-860. Epub 2024 Dec 12.
8
Multi-adductomics: Advancing mass spectrometry techniques for comprehensive exposome characterization.
Trends Analyt Chem. 2024 Nov;180. doi: 10.1016/j.trac.2024.117900. Epub 2024 Aug 5.
9
Epitranscriptome: A Novel Regulatory Layer during Atherosclerosis Progression.
Curr Med Chem. 2024 Aug 30. doi: 10.2174/0109298673322775240822051304.

本文引用的文献

1
PARP-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin.
Epigenetics Chromatin. 2023 Jun 15;16(1):26. doi: 10.1186/s13072-023-00501-x.
2
Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner.
Cell Res. 2023 May;33(5):355-371. doi: 10.1038/s41422-023-00793-4. Epub 2023 Mar 8.
3
Internal m7G methylation: A novel epitranscriptomic contributor in brain development and diseases.
Mol Ther Nucleic Acids. 2023 Jan 11;31:295-308. doi: 10.1016/j.omtn.2023.01.003. eCollection 2023 Mar 14.
4
Exon architecture controls mRNA mA suppression and gene expression.
Science. 2023 Feb 17;379(6633):677-682. doi: 10.1126/science.abj9090. Epub 2023 Jan 27.
6
Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability.
Mol Cell. 2023 Jan 19;83(2):237-251.e7. doi: 10.1016/j.molcel.2022.12.026. Epub 2023 Jan 3.
7
Transcriptome-wide profiling and quantification of N-methyladenosine by enzyme-assisted adenosine deamination.
Nat Biotechnol. 2023 Jul;41(7):993-1003. doi: 10.1038/s41587-022-01587-6. Epub 2023 Jan 2.
8
Small Interfering RNAs Targeting a Chromatin-Associated RNA Induce Its Transcriptional Silencing in Human Cells.
Mol Cell Biol. 2022 Dec 15;42(12):e0027122. doi: 10.1128/mcb.00271-22. Epub 2022 Nov 29.
9
A guide to membraneless organelles and their various roles in gene regulation.
Nat Rev Mol Cell Biol. 2023 Apr;24(4):288-304. doi: 10.1038/s41580-022-00558-8. Epub 2022 Nov 23.
10
The dual nature of the nucleolus.
Genes Dev. 2022 Jul 1;36(13-14):765-769. doi: 10.1101/gad.349748.122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验