Suppr超能文献

正则化有序回归与ordinalNet R包。

Regularized Ordinal Regression and the ordinalNet R Package.

作者信息

Wurm Michael J, Rathouz Paul J, Hanlon Bret M

机构信息

Department of Statistics, University of Wisconsin-Madison,

Department of Population Health, Dell Medical School at the University of Texas at Austin,

出版信息

J Stat Softw. 2021 Sep;99(6). doi: 10.18637/jss.v099.i06.

Abstract

Regularization techniques such as the lasso (Tibshirani 1996) and elastic net (Zou and Hastie 2005) can be used to improve regression model coefficient estimation and prediction accuracy, as well as to perform variable selection. Ordinal regression models are widely used in applications where the use of regularization could be beneficial; however, these models are not included in many popular software packages for regularized regression. We propose a coordinate descent algorithm to fit a broad class of ordinal regression models with an elastic net penalty. Furthermore, we demonstrate that each model in this class generalizes to a more flexible form, that can be used to model either ordered or unordered categorical response data. We call this the (ELMO) class, and it includes widely used models such as multinomial logistic regression (which also has an ordinal form) and ordinal logistic regression (which also has an unordered multinomial form). We introduce an elastic net penalty class that applies to either model form, and additionally, this penalty can be used to shrink a non-ordinal model toward its ordinal counterpart. Finally, we introduce the R package , which implements the algorithm for this model class.

摘要

诸如套索回归(蒂布希拉尼,1996年)和弹性网络(邹和哈斯蒂,2005年)等正则化技术可用于提高回归模型系数估计和预测准确性,以及进行变量选择。有序回归模型在使用正则化可能有益的应用中被广泛使用;然而,许多用于正则化回归的流行软件包中并未包含这些模型。我们提出一种坐标下降算法,以拟合具有弹性网络惩罚的广泛类别的有序回归模型。此外,我们证明该类中的每个模型都可推广到更灵活的形式,可用于对有序或无序分类响应数据进行建模。我们将此称为(ELMO)类,它包括广泛使用的模型,如多项逻辑回归(也有有序形式)和有序逻辑回归(也有无序多项形式)。我们引入一种适用于任何一种模型形式的弹性网络惩罚类,此外,这种惩罚可用于将非有序模型向其有序对应模型收缩。最后,我们介绍R包 ,它实现了针对该模型类的算法。

相似文献

1
Regularized Ordinal Regression and the ordinalNet R Package.
J Stat Softw. 2021 Sep;99(6). doi: 10.18637/jss.v099.i06.
2
Elastic Net Regularization Paths for All Generalized Linear Models.
J Stat Softw. 2023;106. doi: 10.18637/jss.v106.i01. Epub 2023 Mar 23.
5
Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification.
BMC Bioinformatics. 2013 Jun 19;14:198. doi: 10.1186/1471-2105-14-198.
9
Sparse Logistic Regression With Penalty for Emotion Recognition in Electroencephalography Classification.
Front Neuroinform. 2020 Aug 7;14:29. doi: 10.3389/fninf.2020.00029. eCollection 2020.
10
NETWORK-REGULARIZED HIGH-DIMENSIONAL COX REGRESSION FOR ANALYSIS OF GENOMIC DATA.
Stat Sin. 2014 Jul;24(3):1433-1459. doi: 10.5705/ss.2012.317.

引用本文的文献

1
Identification of the microglia-associated signature in experimental autoimmune encephalomyelitis.
Front Immunol. 2025 Jun 5;16:1581878. doi: 10.3389/fimmu.2025.1581878. eCollection 2025.
2
Evaluating the Performance of a Regularized Differential Item Functioning Method for Testlet-Based Polytomous Items.
Educ Psychol Meas. 2025 May 31:00131644251342512. doi: 10.1177/00131644251342512.
4
Understanding tinnitus symptom dynamics and clinical improvement through intensive longitudinal data.
NPJ Digit Med. 2025 Jan 14;8(1):27. doi: 10.1038/s41746-024-01425-w.
5
Automated Extraction of Stroke Severity From Unstructured Electronic Health Records Using Natural Language Processing.
J Am Heart Assoc. 2024 Nov 5;13(21):e036386. doi: 10.1161/JAHA.124.036386. Epub 2024 Oct 25.
7
Visual detection of seizures in mice using supervised machine learning.
bioRxiv. 2024 May 30:2024.05.29.596520. doi: 10.1101/2024.05.29.596520.
8
SCIPAC: quantitative estimation of cell-phenotype associations.
Genome Biol. 2024 May 13;25(1):119. doi: 10.1186/s13059-024-03263-1.
10
Scoring system for diagnosis and pretreatment risk assessment of neuroblastoma using urinary biomarker combinations.
Cancer Sci. 2024 May;115(5):1634-1645. doi: 10.1111/cas.16116. Epub 2024 Feb 27.

本文引用的文献

1
Discussion of 'Regularized Regression for Categorical Data'.
Stat Modelling. 2016 Jun;16(3):238-248. doi: 10.1177/1471082x16645694. Epub 2016 Jun 27.
2
ordinalgmifs: An R Package for Ordinal Regression in High-dimensional Data Settings.
Cancer Inform. 2014 Dec 10;13:187-95. doi: 10.4137/CIN.S20806. eCollection 2014.
3
A SIGNIFICANCE TEST FOR THE LASSO.
Ann Stat. 2014 Apr;42(2):413-468. doi: 10.1214/13-AOS1175.
5
Inference after variable selection using restricted permutation methods.
Can J Stat. 2009 Dec 1;37(4):625-644. doi: 10.1002/cjs.10039.
6
High-throughput assessment of CpG site methylation for distinguishing between HCV-cirrhosis and HCV-associated hepatocellular carcinoma.
Mol Genet Genomics. 2010 Apr;283(4):341-9. doi: 10.1007/s00438-010-0522-y. Epub 2010 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验