Suppr超能文献

基于深度学习和相似性网络融合方法,利用多组学数据预测药物敏感性。

Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches.

作者信息

Liu Xiao-Ying, Mei Xin-Yue

机构信息

Guangdong Polytechnic of Science and Technology, Zhuhai, China.

Institute of Systems Engineering, Macau University of Science and Technology, Taipa, China.

出版信息

Front Bioeng Biotechnol. 2023 Apr 13;11:1156372. doi: 10.3389/fbioe.2023.1156372. eCollection 2023.

Abstract

With the rapid development of multi-omics technologies and accumulation of large-scale bio-datasets, many studies have conducted a more comprehensive understanding of human diseases and drug sensitivity from multiple biomolecules, such as DNA, RNA, proteins and metabolites. Using single omics data is difficult to systematically and comprehensively analyze the complex disease pathology and drug pharmacology. The molecularly targeted therapy-based approaches face some challenges, such as insufficient target gene labeling ability, and no clear targets for non-specific chemotherapeutic drugs. Consequently, the integrated analysis of multi-omics data has become a new direction for scientists to explore the mechanism of disease and drug. However, the available drug sensitivity prediction models based on multi-omics data still have problems such as overfitting, lack of interpretability, difficulties in integrating heterogeneous data, and the prediction accuracy needs to be improved. In this paper, we proposed a novel drug sensitivity prediction (NDSP) model based on deep learning and similarity network fusion approaches, which extracts drug targets using an improved sparse principal component analysis (SPCA) method for each omics data, and construct sample similarity networks based on the sparse feature matrices. Furthermore, the fused similarity networks are put into a deep neural network for training, which greatly reduces the data dimensionality and weakens the risk of overfitting problem. We use three omics of data, RNA sequence, copy number aberration and methylation, and select 35 drugs from Genomics of Drug Sensitivity in Cancer (GDSC) for experiments, including Food and Drug Administration (FDA)-approved targeted drugs, FDA-unapproved targeted drugs and non-specific therapies. Compared with some current deep learning methods, our proposed method can extract highly interpretable biological features to achieve highly accurate sensitivity prediction of targeted and non-specific cancer drugs, which is beneficial for the development of precision oncology beyond targeted therapy.

摘要

随着多组学技术的快速发展以及大规模生物数据集的积累,许多研究从DNA、RNA、蛋白质和代谢物等多种生物分子对人类疾病和药物敏感性进行了更全面的理解。使用单一组学数据难以系统全面地分析复杂的疾病病理学和药物药理学。基于分子靶向治疗的方法面临一些挑战,如靶基因标记能力不足,以及非特异性化疗药物没有明确的靶点。因此,多组学数据的综合分析已成为科学家探索疾病和药物机制的新方向。然而,现有的基于多组学数据的药物敏感性预测模型仍然存在过拟合、缺乏可解释性、难以整合异质数据等问题,预测准确性有待提高。本文提出了一种基于深度学习和相似性网络融合方法的新型药物敏感性预测(NDSP)模型,该模型针对每个组学数据使用改进的稀疏主成分分析(SPCA)方法提取药物靶点,并基于稀疏特征矩阵构建样本相似性网络。此外,将融合后的相似性网络放入深度神经网络进行训练,大大降低了数据维度,减弱了过拟合问题的风险。我们使用RNA序列、拷贝数变异和甲基化三种组学数据,并从癌症药物敏感性基因组学(GDSC)中选择35种药物进行实验,包括美国食品药品监督管理局(FDA)批准的靶向药物、FDA未批准的靶向药物和非特异性疗法。与当前一些深度学习方法相比,我们提出的方法可以提取具有高度可解释性的生物学特征,以实现对靶向和非特异性癌症药物的高精度敏感性预测,这有利于超越靶向治疗的精准肿瘤学发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbd/10150883/b5a6b9e8407c/fbioe-11-1156372-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验