Umair Muhammad, Khan Muhammad Shahbaz, Hanif Muhammad, Ghaban Wad, Nafea Ibtehal, Qasem Sultan Noman, Saeed Faisal
School of Engineering, University of Southern Queensland, Toowoomba, QLD, Australia.
School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, United Kingdom.
Front Comput Neurosci. 2025 Aug 18;19:1617883. doi: 10.3389/fncom.2025.1617883. eCollection 2025.
As global life expectancy rises, a growing proportion of the population is affected by dementia, particularly Alzheimer's disease (AD) and Frontotemporal dementia (FTD). Electroencephalography (EEG) based diagnosis presents a non-invasive, cost effective alternative for early detection, yet existing methods are challenged by data scarcity, inter-subject variability, and privacy concerns. This study proposes lightweight and privacy-preserving EEG classification framework combining deep learning and Federated Learning (FL). Five convolutional neural networks (EEGNetv1, EEGNetv4, EEGITNet, EEGInception, EEGInceptionERP) have been evaluated on resting-state EEG dataset comprising 88 subjects. EEG signals are preprocessed using band-pass (1-45 Hz) and notch filtering, followed by exponential standardization and 4-second windowing. EEGNetv4 outperformed among other EEG tailored models, and upon utilizing the hybrid fusion techniques it achieves 97.1% accuracy using only 1,609 parameters and less than 1 MB of memory, demonstrating high efficiency. Moreover, FL using FedAvg is implemented across five stratified clients, achieving 96.9% accuracy on the hybrid fused EEGNetV4 model while preserving data privacy. This work establishes a scalable, resource-efficient, and privacy-compliant framework for EEG-based dementia diagnosis, suitable for deployment in real-world clinical and edge-device settings.
随着全球预期寿命的提高,越来越多的人口受到痴呆症的影响,尤其是阿尔茨海默病(AD)和额颞叶痴呆(FTD)。基于脑电图(EEG)的诊断为早期检测提供了一种非侵入性、成本效益高的替代方法,但现有方法面临数据稀缺、个体间差异和隐私问题的挑战。本研究提出了一种结合深度学习和联邦学习(FL)的轻量级且保护隐私的EEG分类框架。在包含88名受试者的静息态EEG数据集上评估了五个卷积神经网络(EEGNetv1、EEGNetv4、EEGITNet、EEGInception、EEGInceptionERP)。EEG信号先使用带通(1 - 45 Hz)和陷波滤波进行预处理,然后进行指数标准化和4秒加窗处理。EEGNetv4在其他针对EEG的模型中表现最佳,并且在使用混合融合技术时,仅使用1609个参数和不到1 MB的内存就达到了97.1%的准确率,显示出高效率。此外,使用FedAvg的联邦学习在五个分层客户端上实现,在混合融合的EEGNetV4模型上达到了96.9%的准确率,同时保护了数据隐私。这项工作为基于EEG的痴呆症诊断建立了一个可扩展、资源高效且符合隐私规定的框架,适用于在现实世界的临床和边缘设备环境中部署。