Suppr超能文献

基于多种分子信息的癌细胞系药物敏感性预测的计算方法。

A computational method for drug sensitivity prediction of cancer cell lines based on various molecular information.

机构信息

Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.

School of Biological Sciences, Institute for Research in Fundamental Sciences(IPM), Tehran, Iran.

出版信息

PLoS One. 2021 Apr 29;16(4):e0250620. doi: 10.1371/journal.pone.0250620. eCollection 2021.

Abstract

Determining sensitive drugs for a patient is one of the most critical problems in precision medicine. Using genomic profiles of the tumor and drug information can help in tailoring the most efficient treatment for a patient. In this paper, we proposed a classification machine learning approach that predicts the sensitive/resistant drugs for a cell line. It can be performed by using both drug and cell line similarities, one of the cell line or drug similarities, or even not using any similarity information. This paper investigates the influence of using previously defined as well as two newly introduced similarities on predicting anti-cancer drug sensitivity. The proposed method uses max concentration thresholds for assigning drug responses to class labels. Its performance was evaluated using stratified five-fold cross-validation on cell line-drug pairs in two datasets. Assessing the predictive powers of the proposed model and three sets of methods, including state-of-the-art classification methods, state-of-the-art regression methods, and off-the-shelf classification machine learning approaches shows that the proposed method outperforms other methods. Moreover, The efficiency of the model is evaluated in tissue-specific conditions. Besides, the novel sensitive associations predicted by this model were verified by several supportive evidence in the literature and reliable database. Therefore, the proposed model can efficiently be used in predicting anti-cancer drug sensitivity. Material and implementation are available at https://github.com/fahmadimoughari/CDSML.

摘要

确定患者的敏感药物是精准医学中最关键的问题之一。利用肿瘤的基因组图谱和药物信息可以帮助为患者量身定制最有效的治疗方法。在本文中,我们提出了一种分类机器学习方法,用于预测细胞系的敏感/耐药药物。它可以通过使用药物和细胞系相似性、一种细胞系或药物相似性,甚至不使用任何相似性信息来实现。本文研究了使用先前定义的以及两种新引入的相似性对预测抗癌药物敏感性的影响。所提出的方法使用最大浓度阈值将药物反应分配给类标签。它在两个数据集的细胞系-药物对上使用分层五折交叉验证进行了性能评估。评估了所提出模型和三组方法(包括最先进的分类方法、最先进的回归方法和现成的分类机器学习方法)的预测能力,结果表明所提出的方法优于其他方法。此外,还评估了该模型在组织特异性条件下的效率。此外,通过文献中的一些支持证据和可靠的数据库验证了该模型预测的新的敏感关联。因此,所提出的模型可以有效地用于预测抗癌药物的敏感性。材料和实现可在 https://github.com/fahmadimoughari/CDSML 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/534a/8084246/ee23647cf98e/pone.0250620.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验