Suppr超能文献

一种用于肾移植精准诊断的自动化组织学分类系统。

An automated histological classification system for precision diagnostics of kidney allografts.

机构信息

Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France.

Department of Kidney Transplantation, Necker Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France.

出版信息

Nat Med. 2023 May;29(5):1211-1220. doi: 10.1038/s41591-023-02323-6. Epub 2023 May 4.

Abstract

For three decades, the international Banff classification has been the gold standard for kidney allograft rejection diagnosis, but this system has become complex over time with the integration of multimodal data and rules, leading to misclassifications that can have deleterious therapeutic consequences for patients. To improve diagnosis, we developed a decision-support system, based on an algorithm covering all classification rules and diagnostic scenarios, that automatically assigns kidney allograft diagnoses. We then tested its ability to reclassify rejection diagnoses for adult and pediatric kidney transplant recipients in three international multicentric cohorts and two large prospective clinical trials, including 4,409 biopsies from 3,054 patients (62.05% male and 37.95% female) followed in 20 transplant referral centers in Europe and North America. In the adult kidney transplant population, the Banff Automation System reclassified 83 out of 279 (29.75%) antibody-mediated rejection cases and 57 out of 105 (54.29%) T cell-mediated rejection cases, whereas 237 out of 3,239 (7.32%) biopsies diagnosed as non-rejection by pathologists were reclassified as rejection. In the pediatric population, the reclassification rates were 8 out of 26 (30.77%) for antibody-mediated rejection and 12 out of 39 (30.77%) for T cell-mediated rejection. Finally, we found that reclassification of the initial diagnoses by the Banff Automation System was associated with an improved risk stratification of long-term allograft outcomes. This study demonstrates the potential of an automated histological classification to improve transplant patient care by correcting diagnostic errors and standardizing allograft rejection diagnoses.ClinicalTrials.gov registration: NCT05306795 .

摘要

三十年来,国际 Banff 分类一直是肾移植排斥诊断的金标准,但随着多模态数据和规则的融合,该系统变得越来越复杂,导致分类错误,对患者产生有害的治疗后果。为了改善诊断,我们开发了一个决策支持系统,该系统基于涵盖所有分类规则和诊断场景的算法,自动分配肾移植诊断。然后,我们在三个国际多中心队列和两个大型前瞻性临床试验中测试了该系统对成人和儿科肾移植受者排斥诊断进行重新分类的能力,包括来自欧洲和北美的 20 个移植转诊中心的 3054 名患者的 4409 次活检(62.05%为男性,37.95%为女性)。在成人肾移植人群中,Banff 自动化系统重新分类了 279 例抗体介导排斥反应中的 83 例(29.75%)和 105 例 T 细胞介导排斥反应中的 57 例(54.29%),而病理学家诊断为非排斥的 3239 例活检中有 237 例(7.32%)被重新诊断为排斥。在儿科人群中,抗体介导排斥的重新分类率为 26 例中的 8 例(30.77%),T 细胞介导排斥的重新分类率为 39 例中的 12 例(30.77%)。最后,我们发现 Banff 自动化系统对初始诊断的重新分类与改善长期移植物结局的风险分层有关。这项研究表明,自动化组织学分类具有改善移植患者护理的潜力,可通过纠正诊断错误和标准化同种异体排斥诊断来实现。临床试验注册:NCT05306795。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验