Statistics Department, Vivos Technology Limited (Phastar), London, UK.
J Biopharm Stat. 2024 May;34(3):366-378. doi: 10.1080/10543406.2023.2206481. Epub 2023 May 5.
Estimation of median survival and its 95% confidence interval depends on the choice of the survival function, standard error, and a method for constructing the confidence interval. This paper outlines several available possibilities in SAS® (version 9.4) PROC LIFETEST and compares them on theoretical grounds and using simulated data, with criteria: ability to estimate the 95% CI, coverage probability, interval width, and appropriateness for practical use. Data are generated with varying hazard patterns, N, % censoring, and censoring patterns (early, uniform, late, last visit). LIFETEST was run using the Kaplan-Meier and Nelson-Aalen estimators and the transformations available (linear, log, logit, complementary log-log, and arcsine square root). Using the Kaplan-Meier estimator with the logarithmic transformation as well as with the logit leads to a high frequency of LIFETEST not being able to estimate the 95% CI. The combination of Kaplan-Meier with the linear transformation is associated with poor coverage achieved. For small samples, late/last visit censoring has a negative effect on being able to estimate the 95% CI. Heavy early censoring can lead to low coverage of the 95% CI of median survival for sample sizes up to and including = 40. The two combinations that are optimal for being able to estimate the 95% CI and having adequate coverage are the Kaplan-Meier estimator with complementary log-log transformation, and the Nelson-Aalen estimator with linear transformation. The former fares best on the third criterion (smaller width) and is also the SAS® default and validates the choice of default.
中位生存期及其 95%置信区间的估计取决于生存函数、标准误差和构建置信区间的方法的选择。本文概述了 SAS®(版本 9.4)PROC LIFETEST 中几种可用的可能性,并从理论和使用模拟数据的角度对它们进行了比较,标准为:估计 95%CI 的能力、覆盖率概率、区间宽度和实际使用的适当性。使用不同的危险模式、N、%删失和删失模式(早期、均匀、晚期、最后一次访问)生成数据。使用 Kaplan-Meier 和 Nelson-Aalen 估计量以及可用的转换(线性、对数、对数、互补对数对数和反正弦平方根)运行 LIFETEST。使用对数转换的 Kaplan-Meier 估计量以及逻辑转换会导致 LIFETEST 无法估计 95%CI 的频率很高。Kaplan-Meier 与线性变换的组合与实现的不良覆盖率相关联。对于小样本,晚期/最后一次访问删失对能够估计 95%CI 有负面影响。早期大量删失可能导致中位生存期 95%CI 的覆盖率低,样本量高达 40。对于能够估计 95%CI 并且具有足够覆盖率的两个最佳组合是 Kaplan-Meier 与互补对数对数变换的组合,以及 Nelson-Aalen 与线性变换的组合。前者在第三个标准(较小的宽度)上表现最佳,并且是 SAS®的默认值,验证了默认值的选择。