Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Nat Commun. 2023 May 5;14(1):2616. doi: 10.1038/s41467-023-38267-1.
The TCR integrates forces in its triggering process upon interaction with pMHC. Force elicits TCR catch-slip bonds with strong pMHCs but slip-only bonds with weak pMHCs. We develop two models and apply them to analyze 55 datasets, demonstrating the models' ability to quantitatively integrate and classify a broad range of bond behaviors and biological activities. Comparing to a generic two-state model, our models can distinguish class I from class II MHCs and correlate their structural parameters with the TCR/pMHC's potency to trigger T cell activation. The models are tested by mutagenesis using an MHC and a TCR mutated to alter conformation changes. The extensive comparisons between theory and experiment provide model validation and testable hypothesis regarding specific conformational changes that control bond profiles, thereby suggesting structural mechanisms for the inner workings of the TCR mechanosensing machinery and plausible explanations of why and how force may amplify TCR signaling and antigen discrimination.
TCR 在与 pMHC 相互作用时整合触发过程中的力。力会引发与强 pMHC 的 TCR 捕获-滑动键,但仅与弱 pMHC 发生滑动键。我们开发了两个模型,并将其应用于分析 55 个数据集,证明了这些模型能够定量整合和分类广泛的键行为和生物活性。与通用的两态模型相比,我们的模型可以区分 I 类和 II 类 MHC,并将它们的结构参数与 TCR/pMHC 触发 T 细胞激活的能力相关联。该模型通过使用 MHC 和 TCR 的突变进行测试,以改变构象变化。理论与实验之间的广泛比较为特定构象变化提供了模型验证和可测试的假设,这些变化控制着键的分布,从而为 TCR 机械传感机制的内部工作原理提供了结构机制,并为为什么以及如何力可能放大 TCR 信号和抗原识别提供了合理的解释。