Suppr超能文献

利用机器学习评估放射组学特征对住院 COVID-19 死亡率的预后效用。

Use of machine learning to assess the prognostic utility of radiomic features for in-hospital COVID-19 mortality.

机构信息

Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.

Department of Environmental Health and Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.

出版信息

Sci Rep. 2023 May 5;13(1):7318. doi: 10.1038/s41598-023-34559-0.

Abstract

As portable chest X-rays are an efficient means of triaging emergent cases, their use has raised the question as to whether imaging carries additional prognostic utility for survival among patients with COVID-19. This study assessed the importance of known risk factors on in-hospital mortality and investigated the predictive utility of radiomic texture features using various machine learning approaches. We detected incremental improvements in survival prognostication utilizing texture features derived from emergent chest X-rays, particularly among older patients or those with a higher comorbidity burden. Important features included age, oxygen saturation, blood pressure, and certain comorbid conditions, as well as image features related to the intensity and variability of pixel distribution. Thus, widely available chest X-rays, in conjunction with clinical information, may be predictive of survival outcomes of patients with COVID-19, especially older, sicker patients, and can aid in disease management by providing additional information.

摘要

由于便携式胸部 X 光检查是分诊紧急情况的有效手段,因此其使用引发了一个问题,即对于 COVID-19 患者,影像学检查是否对生存具有额外的预后价值。本研究评估了已知危险因素对住院死亡率的重要性,并利用各种机器学习方法研究了放射组学纹理特征的预测效用。我们发现,利用源自紧急胸部 X 光的纹理特征可以提高生存预测的准确性,特别是对于年龄较大或合并症负担较高的患者。重要特征包括年龄、血氧饱和度、血压和某些合并症,以及与像素分布强度和变异性相关的图像特征。因此,广泛可用的胸部 X 光片结合临床信息可能可以预测 COVID-19 患者的生存结果,特别是年龄较大、病情较重的患者,并通过提供额外信息来帮助疾病管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d68e/10163059/d2e601b4a6d4/41598_2023_34559_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验