Cai Wentao, Hu Jian, Fan Wenlei, Xu Yaxi, Tang Jing, Xie Ming, Zhang Yunsheng, Guo Zhanbao, Zhou Zhengkui, Hou Shuisheng
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266108, China.
J Anim Sci Biotechnol. 2023 May 6;14(1):74. doi: 10.1186/s40104-023-00875-8.
Carcass traits are crucial for broiler ducks, but carcass traits can only be measured postmortem. Genomic selection (GS) is an effective approach in animal breeding to improve selection and reduce costs. However, the performance of genomic prediction in duck carcass traits remains largely unknown.
In this study, we estimated the genetic parameters, performed GS using different models and marker densities, and compared the estimation performance between GS and conventional BLUP on 35 carcass traits in an F population of ducks. Most of the cut weight traits and intestine length traits were estimated to be high and moderate heritabilities, respectively, while the heritabilities of percentage slaughter traits were dynamic. The reliability of genome prediction using GBLUP increased by an average of 0.06 compared to the conventional BLUP method. The Permutation studies revealed that 50K markers had achieved ideal prediction reliability, while 3K markers still achieved 90.7% predictive capability would further reduce the cost for duck carcass traits. The genomic relationship matrix normalized by our true variance method instead of the widely used [Formula: see text] could achieve an increase in prediction reliability in most traits. We detected most of the bayesian models had a better performance, especially for BayesN. Compared to GBLUP, BayesN can further improve the predictive reliability with an average of 0.06 for duck carcass traits.
This study demonstrates genomic selection for duck carcass traits is promising. The genomic prediction can be further improved by modifying the genomic relationship matrix using our proposed true variance method and several Bayesian models. Permutation study provides a theoretical basis for the fact that low-density arrays can be used to reduce genotype costs in duck genome selection.
胴体性状对肉鸭至关重要,但胴体性状只能在屠宰后测量。基因组选择(GS)是动物育种中提高选择效率和降低成本的有效方法。然而,基因组预测在鸭胴体性状方面的表现仍 largely 未知。
在本研究中,我们估计了遗传参数,使用不同模型和标记密度进行基因组选择,并比较了基因组选择与传统最佳线性无偏预测(BLUP)在鸭 F 群体 35 个胴体性状上的估计性能。大多数分割重量性状和肠道长度性状的遗传力分别估计为高和中等,而屠宰率性状的遗传力是动态的。与传统 BLUP 方法相比,使用基因组最佳线性无偏预测(GBLUP)进行基因组预测的可靠性平均提高了 0.06。置换研究表明,50K 标记已实现理想的预测可靠性,而 3K 标记仍能达到 90.7%的预测能力,这将进一步降低鸭胴体性状的成本。通过我们的真方差方法而不是广泛使用的[公式:见文本]对基因组关系矩阵进行归一化,可以在大多数性状上提高预测可靠性。我们发现大多数贝叶斯模型表现更好,尤其是 BayesN。与 GBLUP 相比,BayesN 可进一步提高鸭胴体性状的预测可靠性,平均提高 0.06。
本研究表明基因组选择在鸭胴体性状方面具有前景。通过使用我们提出的真方差方法和几种贝叶斯模型修改基因组关系矩阵,可以进一步改进基因组预测。置换研究为低密度阵列可用于降低鸭基因组选择中的基因型成本这一事实提供了理论基础。