Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.
Clin Pharmacokinet. 2023 Jun;62(6):891-904. doi: 10.1007/s40262-023-01241-7. Epub 2023 May 6.
Spinal muscular atrophy (SMA) is a progressive neuromuscular disease caused by insufficient levels of survival motor neuron (SMN) protein. Risdiplam (Evrysdi) increases SMN protein and is approved for the treatment of SMA. Risdiplam has high oral bioavailability and is primarily eliminated through hepatic metabolism by flavin-containing monooxygenase3 (FMO3) and cytochrome P450 (CYP) 3A, by 75% and 20%, respectively. While the FMO3 ontogeny is critical input data for the prediction of risdiplam pharmacokinetics (PK) in children, it was mostly studied in vitro, and robust in vivo FMO3 ontogeny is currently lacking. We derived in vivo FMO3 ontogeny by mechanistic population PK modelling of risdiplam and investigated its impact on drug-drug interactions in children.
Population and physiologically based PK (PPK and PBPK) modelling conducted during the development of risdiplam were integrated into a mechanistic PPK (Mech-PPK) model to estimate in vivo FMO3 ontogeny. A total of 10,205 risdiplam plasma concentration-time data from 525 subjects aged 2 months-61 years were included. Six different structural models were examined to describe the in vivo FMO3 ontogeny. Impact of the newly estimated FMO3 ontogeny on predictions of drug-drug interaction (DDI) in children was investigated by simulations for dual CYP3A-FMO3 substrates including risdiplam and theoretical substrates covering a range of metabolic fractions (fm) of CYP3A and FMO3 (fm:fm= 10%:90%, 50%:50%, 90%:10%).
All six models consistently predicted higher FMO3 expression/activity in children, reaching a maximum at the age of 2 years with an approximately threefold difference compared with adults. Different trajectories of FMO3 ontogeny in infants < 4 months of age were predicted by the six models, likely due to limited observations for this age range. Use of this in vivo FMO3 ontogeny function improved prediction of risdiplam PK in children compared to in vitro FMO3 ontogeny functions. The simulations of theoretical dual CYP3A-FMO3 substrates predicted comparable or decreased CYP3A-victim DDI propensity in children compared to adults across the range of fm values. Refinement of FMO3 ontogeny in the risdiplam model had no impact on the previously predicted low CYP3A-victim or -perpetrator DDI risk of risdiplam in children.
Mech-PPK modelling successfully estimated in vivo FMO3 ontogeny from risdiplam data collected from 525 subjects aged 2 months-61 years. To our knowledge, this is the first investigation of in vivo FMO3 ontogeny by population approach using comprehensive data covering a wide age range. Derivation of a robust in vivo FMO3 ontogeny function has significant implications on the prospective prediction of PK and DDI in children for other FMO3 substrates in the future, as illustrated in the current study for FMO3 and/or dual CYP3A-FMO3 substrates.
NCT02633709, NCT03032172, NCT02908685, NCT02913482, NCT03988907.
脊髓性肌萎缩症(SMA)是一种进行性神经肌肉疾病,由生存运动神经元(SMN)蛋白水平不足引起。利司扑兰(Evrysdi)可增加 SMN 蛋白,被批准用于治疗 SMA。利司扑兰具有较高的口服生物利用度,主要通过黄素单加氧酶 3(FMO3)和细胞色素 P450(CYP)3A 进行肝代谢清除,分别为 75%和 20%。尽管 FMO3 个体发育是预测儿童利司扑兰药代动力学(PK)的关键输入数据,但主要是在体外进行研究,目前缺乏可靠的体内 FMO3 个体发育。我们通过利司扑兰的机制群体 PK 模型推导出体内 FMO3 个体发育,并研究了其对儿童药物相互作用(DDI)的影响。
在利司扑兰开发过程中进行的群体和基于生理学的 PK(PPK 和 PBPK)建模被整合到一个机制性 PK(Mech-PPK)模型中,以估计体内 FMO3 个体发育。共纳入了 525 名年龄在 2 个月至 61 岁的受试者的 10205 份利司扑兰血浆浓度-时间数据。共检查了六个不同的结构模型来描述体内 FMO3 个体发育。通过模拟利司扑兰和涵盖 CYP3A 和 FMO3 代谢分数(fm)范围的理论底物(fm:fm=10%:90%、50%:50%、90%:10%)的双重 CYP3A-FMO3 底物的药物相互作用(DDI)预测,研究了新估计的 FMO3 个体发育对儿童预测的影响。
所有六个模型均一致预测儿童的 FMO3 表达/活性更高,在 2 岁时达到最大值,与成人相比差异约为三倍。六个模型预测了婴儿 <4 个月的 FMO3 个体发育的不同轨迹,这可能是由于该年龄段的观察结果有限。与体外 FMO3 个体发育功能相比,使用该体内 FMO3 功能可改善利司扑兰 PK 在儿童中的预测。对理论双重 CYP3A-FMO3 底物的模拟预测,与成人相比,在整个 fm 值范围内,CYP3A 受害物 DDI 倾向在儿童中具有可比性或降低。在利司扑兰模型中对 FMO3 个体发育的细化对先前预测的利司扑兰在儿童中低 CYP3A 受害物或加害物 DDI 风险没有影响。
Mech-PPK 模型成功地从 525 名年龄在 2 个月至 61 岁的受试者的利司扑兰数据中估计了体内 FMO3 个体发育。据我们所知,这是首次使用涵盖广泛年龄范围的综合数据通过群体方法研究体内 FMO3 个体发育。体内 FMO3 个体发育功能的可靠推导对未来其他 FMO3 底物在儿童中的 PK 和 DDI 预测具有重要意义,如当前研究中对 FMO3 和/或双重 CYP3A-FMO3 底物的预测。
NCT02633709、NCT03032172、NCT02908685、NCT02913482、NCT03988907。