Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, People's Republic of China.
Gastroenterology. 2021 Jun;160(7):2303-2316.e11. doi: 10.1053/j.gastro.2021.02.027. Epub 2021 Feb 17.
BACKGROUND & AIMS: No reliable method for evaluating intestinal fibrosis in Crohn's disease (CD) exists; therefore, we developed a computed-tomography enterography (CTE)-based radiomic model (RM) for characterizing intestinal fibrosis in CD. METHODS: This retrospective multicenter study included 167 CD patients with 212 bowel lesions (training, 98 lesions; test, 114 lesions) who underwent preoperative CTE and bowel resection at 1 of the 3 tertiary referral centers from January 2014 through June 2020. Bowel fibrosis was histologically classified as none-mild or moderate-severe. In the training cohort, 1454 radiomic features were extracted from venous-phase CTE and a machine learning-based RM was developed based on the reproducible features using logistic regression. The RM was validated in an independent external test cohort recruited from 3 centers. The diagnostic performance of RM was compared with 2 radiologists' visual interpretation of CTE using receiver operating characteristic (ROC) curve analysis. RESULTS: In the training cohort, the area under the ROC curve (AUC) of RM for distinguishing moderate-severe from none-mild intestinal fibrosis was 0.888 (95% confidence interval [CI], 0.818-0.957). In the test cohort, the RM showed robust performance across 3 centers with an AUC of 0.816 (95% CI, 0.706-0.926), 0.724 (95% CI, 0.526-0.923), and 0.750 (95% CI, 0.560-0.940), respectively. Moreover, the RM was more accurate than visual interpretations by either radiologist (radiologist 1, AUC = 0.554; radiologist 2, AUC = 0.598; both, P < .001) in the test cohort. Decision curve analysis showed that the RM provided a better net benefit to predicting intestinal fibrosis than the radiologists. CONCLUSIONS: A CTE-based RM allows for accurate characterization of intestinal fibrosis in CD.
背景与目的:目前尚无可靠的方法来评估克罗恩病(CD)中的肠纤维化;因此,我们开发了一种基于计算机断层肠摄影术(CTE)的放射组学模型(RM)来对 CD 中的肠纤维化进行特征描述。
方法:这项回顾性多中心研究纳入了 2014 年 1 月至 2020 年 6 月期间在 3 家三级转诊中心中的 1 家接受术前 CTE 和肠道切除术的 167 例 CD 患者,共 212 处肠道病变(训练队列 98 处病变;测试队列 114 处病变)。肠道纤维化的组织学分类为无-轻度或中-重度。在训练队列中,从静脉期 CTE 中提取了 1454 个放射组学特征,并使用逻辑回归基于可重复的特征开发了基于机器学习的 RM。该 RM 在从 3 个中心招募的独立外部测试队列中进行了验证。通过受试者工作特征(ROC)曲线分析比较了 RM 与 2 位放射科医生对 CTE 的视觉解读的诊断性能。
结果:在训练队列中,用于区分中-重度与无-轻度肠道纤维化的 RM 的 ROC 曲线下面积(AUC)为 0.888(95%置信区间[CI],0.818-0.957)。在测试队列中,RM 在 3 个中心均表现出良好的性能,AUC 分别为 0.816(95%CI,0.706-0.926)、0.724(95%CI,0.526-0.923)和 0.750(95%CI,0.560-0.940)。此外,在测试队列中,RM 比任何一位放射科医生的视觉解读都更准确(放射科医生 1,AUC=0.554;放射科医生 2,AUC=0.598;均 P<.001)。决策曲线分析表明,与放射科医生相比,RM 对预测肠道纤维化具有更好的净收益。
结论:基于 CTE 的 RM 可准确描述 CD 中的肠纤维化。
Transl Gastroenterol Hepatol. 2025-7-7
Tech Coloproctol. 2025-5-10
Saudi J Gastroenterol. 2025-7-1
Inflamm Bowel Dis. 2020-4-11
J Pediatr Gastroenterol Nutr. 2019-11
Clin Gastroenterol Hepatol. 2019-12
Radiology. 2018-12-4