Leibniz Research Centre for Working Environment and Human Factors Dortmund (IfADo), Dortmund, Germany.
School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK.
Psychophysiology. 2023 Oct;60(10):e14323. doi: 10.1111/psyp.14323. Epub 2023 May 6.
When EEG recordings are used to reveal interactions between central-nervous and cardiovascular processes, the cardiac field artifact (CFA) poses a major challenge. Because the electric field generated by cardiac activity is also captured by scalp electrodes, the CFA arises as a heavy contaminant whenever EEG data are analyzed time-locked to cardio-electric events. A typical example is measuring stimulus-evoked potentials elicited at different phases of the cardiac cycle. Here, we present a nonlinear regression method deploying neural networks that allows to remove the CFA from the EEG signal in such scenarios. We train neural network models to predict R-peak centered EEG episodes based on the ECG and additional CFA-related information. In a second step, these trained models are used to predict and consequently remove the CFA in EEG episodes containing visual stimulation occurring time-locked to the ECG. We show that removing these predictions from the signal effectively removes the CFA without affecting the intertrial phase coherence of stimulus-evoked activity. In addition, we provide the results of an extensive grid search suggesting a set of appropriate model hyperparameters. The proposed method offers a replicable way of removing the CFA on the single-trial level, without affecting stimulus-related variance occurring time-locked to cardiac events. Disentangling the cardiac field artifact (CFA) from the EEG signal is a major challenge when investigating the neurocognitive impact of cardioafferent traffic by means of the EEG. When stimuli are presented time-locked to the cardiac cycle, both sources of variance are systematically confounded. Here, we propose a regression-based approach deploying neural network models to remove the CFA from the EEG. This approach effectively removes the CFA on a single-trial level and is purely data-driven, providing replicable results.
当脑电图记录被用于揭示中枢神经系统和心血管过程之间的相互作用时,心脏场伪迹(CFA)是一个主要挑战。由于心脏活动产生的电场也被头皮电极捕获,因此每当 EEG 数据与心电事件进行时间锁定分析时,CFA 就会作为主要干扰出现。一个典型的例子是测量在心脏周期的不同相位引发的刺激诱发电位。在这里,我们提出了一种使用神经网络的非线性回归方法,可以在这种情况下从 EEG 信号中去除 CFA。我们训练神经网络模型,根据心电图和其他与 CFA 相关的信息,预测以 R 波为中心的 EEG 段。在第二步中,这些训练好的模型被用于预测并因此去除在时间上与心电图锁定的视觉刺激出现的 EEG 段中的 CFA。我们表明,从信号中去除这些预测可以有效地去除 CFA,而不会影响刺激诱发电活动的试验间相位相干性。此外,我们提供了广泛的网格搜索结果,提出了一组合适的模型超参数。该方法提供了一种可重复的方法,可以在不影响与心脏事件时间锁定的刺激相关方差的情况下,在单次试验水平上去除 CFA。当通过 EEG 研究心传入流量对神经认知的影响时,从 EEG 信号中分离心脏场伪迹(CFA)是一个主要挑战。当刺激与心脏周期时间锁定时,这两个来源的方差都会受到系统干扰。在这里,我们提出了一种基于回归的方法,使用神经网络模型从 EEG 中去除 CFA。这种方法可以有效地在单次试验水平上去除 CFA,并且完全是数据驱动的,可以提供可重复的结果。