Suppr超能文献

使用参考层和标准脑电图帽去除心冲击图伪迹

Ballistocardiogram artifact removal with a reference layer and standard EEG cap.

作者信息

Luo Qingfei, Huang Xiaoshan, Glover Gary H

机构信息

Department of Radiology, Stanford University, Stanford, CA 94305, USA.

Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.

出版信息

J Neurosci Methods. 2014 Aug 15;233:137-49. doi: 10.1016/j.jneumeth.2014.06.021. Epub 2014 Jun 22.

Abstract

BACKGROUND

In simultaneous EEG-fMRI, the EEG recordings are severely contaminated by ballistocardiogram (BCG) artifacts, which are caused by cardiac pulsations. To reconstruct and remove the BCG artifacts, one promising method is to measure the artifacts in the absence of EEG signal by placing a group of electrodes (BCG electrodes) on a conductive layer (reference layer) insulated from the scalp. However, current BCG reference layer (BRL) methods either use a customized EEG cap composed of electrode pairs, or need to construct the custom reference layer through additional model-building experiments for each EEG-fMRI experiment. These requirements have limited the versatility and efficiency of BRL. The aim of this study is to propose a more practical and efficient BRL method and compare its performance with the most popular BCG removal method, the optimal basis sets (OBS) algorithm.

NEW METHOD

By designing the reference layer as a permanent and reusable cap, the new BRL method is able to be used with a standard EEG cap, and no extra experiments and preparations are needed to use the BRL in an EEG-fMRI experiment.

RESULTS

The BRL method effectively removed the BCG artifacts from both oscillatory and evoked potential scalp recordings and recovered the EEG signal.

COMPARISON WITH EXISTING METHOD

Compared to the OBS, this new BRL method improved the contrast-to-noise ratios of the alpha-wave, visual, and auditory evoked potential signals by 101%, 76%, and 75%, respectively, employing 160 BCG electrodes. Using only 20 BCG electrodes, the BRL improved the EEG signal by 74%/26%/41%, respectively.

CONCLUSION

The proposed method can substantially improve the EEG signal quality compared with traditional methods.

摘要

背景

在同步脑电图 - 功能磁共振成像(EEG - fMRI)中,脑电图记录会受到由心脏搏动引起的心冲击图(BCG)伪迹的严重污染。为了重建和去除BCG伪迹,一种有前景的方法是通过将一组电极(BCG电极)放置在与头皮绝缘的导电层(参考层)上,在没有EEG信号的情况下测量伪迹。然而,当前的BCG参考层(BRL)方法要么使用由电极对组成的定制EEG帽,要么需要为每个EEG - fMRI实验通过额外的模型构建实验来构建定制参考层。这些要求限制了BRL的通用性和效率。本研究的目的是提出一种更实用、高效的BRL方法,并将其性能与最流行的BCG去除方法——最优基集(OBS)算法进行比较。

新方法

通过将参考层设计为永久性且可重复使用的帽,新的BRL方法能够与标准EEG帽一起使用,并且在EEG - fMRI实验中使用BRL时无需额外的实验和准备。

结果

BRL方法有效地从振荡和诱发电位头皮记录中去除了BCG伪迹,并恢复了EEG信号。

与现有方法的比较

与OBS相比,这种新的BRL方法使用160个BCG电极时,分别将α波、视觉和听觉诱发电位信号的对比度噪声比提高了101%、76%和75%。仅使用20个BCG电极时,BRL分别将EEG信号提高了74%/26%/41%。

结论

与传统方法相比,所提出的方法可以显著提高EEG信号质量。

相似文献

1
Ballistocardiogram artifact removal with a reference layer and standard EEG cap.使用参考层和标准脑电图帽去除心冲击图伪迹
J Neurosci Methods. 2014 Aug 15;233:137-49. doi: 10.1016/j.jneumeth.2014.06.021. Epub 2014 Jun 22.
10

引用本文的文献

本文引用的文献

7
A personalized history of EEG-fMRI integration.脑电-功能磁共振成像整合的个性化历史。
Neuroimage. 2012 Aug 15;62(2):1056-67. doi: 10.1016/j.neuroimage.2012.01.039. Epub 2012 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验