Gogurla Narendar, Wahab Abdul, Kim Sunghwan
Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea.
Department of Biomedical Engineering & Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
Mater Today Bio. 2023 Apr 24;20:100642. doi: 10.1016/j.mtbio.2023.100642. eCollection 2023 Jun.
Bio-integrated optoelectronics can be interfaced with biological tissues, thereby offering opportunities for clinical diagnosis and therapy. However, finding a suitable biomaterial-based semiconductor to interface with electronics is still challenging. In this study, a semiconducting layer is assembled comprising a silk protein hydrogel and melanin nanoparticles (NPs). The silk protein hydrogel provides a water-rich environment for the melanin NPs that maximizes their ionic conductivity and bio-friendliness. An efficient photodetector is produced by forming a junction between melanin NP-silk and a -type Si (-Si) semiconductor. The observed charge accumulation/transport behavior at the melanin NP-silk/-Si junction is associated with the ionic conductive state of the melanin NP-silk composite. The melanin NP-silk semiconducting layer is printed as an array on an Si substrate. The photodetector array exhibits uniform photo-response to illumination at various wavelengths, thus providing broadband photodetection. Efficient charge transfer between melanin NP-silk and Si provides fast photo-switching with rise and decay constants of 0.44 s and 0.19 s, respectively. The photodetector with a biotic interface comprising an Ag nanowire-incorporated silk layer as the top contact can operate when underneath biological tissue. The photo-responsive biomaterial-Si semiconductor junction using light as a stimulus offers a bio-friendly and versatile platform for artificial electronic skin/tissue.
生物集成光电子器件可以与生物组织相连接,从而为临床诊断和治疗提供机会。然而,找到一种合适的基于生物材料的半导体与电子器件相连接仍然具有挑战性。在本研究中,组装了一种半导体层,其由丝蛋白水凝胶和黑色素纳米颗粒(NPs)组成。丝蛋白水凝胶为黑色素纳米颗粒提供了富含水的环境,使它们的离子导电性和生物友好性最大化。通过在黑色素NP-丝和p型硅(p-Si)半导体之间形成结来制造高效的光电探测器。在黑色素NP-丝/p-Si结处观察到的电荷积累/传输行为与黑色素NP-丝复合材料的离子导电状态有关。黑色素NP-丝半导体层被印刷成阵列在硅衬底上。该光电探测器阵列对各种波长的光照表现出均匀的光响应,从而提供宽带光检测。黑色素NP-丝和硅之间的有效电荷转移提供了快速的光开关,其上升和衰减常数分别为0.44秒和0.19秒。具有生物界面的光电探测器,其顶部接触层为包含银纳米线的丝层,当置于生物组织下方时仍可工作。使用光作为刺激的光响应生物材料-p-Si半导体结为人工电子皮肤/组织提供了一个生物友好且通用的平台。