Suppr超能文献

基于“你只看一次”算法的深度学习模型用于三维骨骼图像中骨折区域的检测与可视化

Deep Learning Model Based on You Only Look Once Algorithm for Detection and Visualization of Fracture Areas in Three-Dimensional Skeletal Images.

作者信息

Jeon Young-Dae, Kang Min-Jun, Kuh Sung-Uk, Cha Ha-Yeong, Kim Moo-Sub, You Ju-Yeon, Kim Hyeon-Joo, Shin Seung-Han, Chung Yang-Guk, Yoon Do-Kun

机构信息

Department of Orthopedic Surgery, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan 44033, Republic of Korea.

Department of Integrative Medicine, College of Medicine, Yonsei University of Korea, Seoul 03722, Republic of Korea.

出版信息

Diagnostics (Basel). 2023 Dec 20;14(1):11. doi: 10.3390/diagnostics14010011.

Abstract

Utilizing "You only look once" (YOLO) v4 AI offers valuable support in fracture detection and diagnostic decision-making. The purpose of this study was to help doctors to detect and diagnose fractures more accurately and intuitively, with fewer errors. The data accepted into the backbone are diversified through CSPDarkNet-53. Feature maps are extracted using Spatial Pyramid Pooling and a Path Aggregation Network in the neck part. The head part aggregates and generates the final output. All bounding boxes by the YOLO v4 are mapped onto the 3D reconstructed bone images after being resized to match the same region as shown in the 2D CT images. The YOLO v4-based AI model was evaluated through precision-recall (PR) curves and the intersection over union (IoU). Our proposed system facilitated an intuitive display of the fractured area through a distinctive red mask overlaid on the 3D reconstructed bone images. The high average precision values (>0.60) were reported as 0.71 and 0.81 from the PR curves of the tibia and elbow, respectively. The IoU values were calculated as 0.6327 (tibia) and 0.6638 (elbow). When utilized by orthopedic surgeons in real clinical scenarios, this AI-powered 3D diagnosis support system could enable a quick and accurate trauma diagnosis.

摘要

利用“你只看一次”(YOLO)v4人工智能在骨折检测和诊断决策中提供了有价值的支持。本研究的目的是帮助医生更准确、直观地检测和诊断骨折,减少错误。通过CSPDarkNet-53使输入主干的数据多样化。在颈部使用空间金字塔池化和路径聚合网络提取特征图。头部进行聚合并生成最终输出。YOLO v4生成的所有边界框在调整大小以匹配与二维CT图像中所示相同区域后,被映射到三维重建的骨骼图像上。基于YOLO v4的人工智能模型通过精确率-召回率(PR)曲线和交并比(IoU)进行评估。我们提出的系统通过在三维重建骨骼图像上叠加独特的红色蒙版,直观地显示骨折区域。从胫骨和肘部的PR曲线报告的高平均精确率值(>0.60)分别为0.71和0.81。IoU值计算为0.6327(胫骨)和0.6638(肘部)。当骨科医生在实际临床场景中使用时,这个由人工智能驱动的三维诊断支持系统可以实现快速准确的创伤诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/665a/10802847/3dd6cb20364c/diagnostics-14-00011-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验