IEEE Trans Neural Syst Rehabil Eng. 2023;31:2306-2314. doi: 10.1109/TNSRE.2023.3273990. Epub 2023 May 17.
The boundary-based assist-as-needed (BAAN) force field is widely used in robotic rehabilitation and has shown promising results in improving trunk control and postural stability. However, the fundamental understanding of how the BAAN force field affects the neuromuscular control remains unclear. In this study, we investigate how the BAAN force field impacts muscle synergy in the lower limbs during standing posture training. We integrated virtual reality (VR) into a cable-driven Robotic Upright Stand Trainer (RobUST) to define a complex standing task that requires both reactive and voluntary dynamic postural control. Ten healthy subjects were randomly assigned to two groups. Each subject performed 100 trials of the standing task with or without assistance from the BAAN force field provided by RobUST. The BAAN force field significantly improved balance control and motor task performance. Our results also indicate that the BAAN force field reduced the total number of lower limb muscle synergies while concurrently increasing the synergy density (i.e., number of muscles recruited in each synergy) during both reactive and voluntary dynamic posture training. This pilot study provides fundamental insights into understanding the neuromuscular basis of the BAAN robotic rehabilitation strategy and its potential for clinical applications. In addition, we expanded the repertoire of training with RobUST that integrates both perturbation training and goal-oriented functional motor training within a single task. This approach can be extended to other rehabilitation robots and training approaches with them.
基于边界的按需辅助 (BAAN) 力场在机器人康复中得到了广泛应用,并在改善躯干控制和姿势稳定性方面显示出了有前途的效果。然而,BAAN 力场如何影响神经肌肉控制的基本原理仍不清楚。在这项研究中,我们研究了 BAAN 力场如何影响站立姿势训练中下肢的肌肉协同作用。我们将虚拟现实 (VR) 集成到电缆驱动的机器人直立站立训练器 (RobUST) 中,定义了一个复杂的站立任务,需要反应性和自愿性动态姿势控制。十位健康受试者被随机分配到两组。每个受试者在 RobUST 提供的 BAAN 力场的辅助或不辅助下,完成了 100 次站立任务。BAAN 力场显著改善了平衡控制和运动任务表现。我们的结果还表明,BAAN 力场减少了反应性和自愿性动态姿势训练中下肢肌肉协同作用的总数,同时增加了协同作用密度(即每个协同作用中募集的肌肉数量)。这项初步研究提供了对理解 BAAN 机器人康复策略的神经肌肉基础及其在临床应用中的潜力的基本见解。此外,我们通过 RobUST 扩展了训练范围,该范围在单个任务中整合了扰动训练和以目标为导向的功能性运动训练。这种方法可以扩展到其他康复机器人和训练方法。