Suppr超能文献

多连接表示学习网络在重度抑郁症诊断中的应用。

Multi-Connectivity Representation Learning Network for Major Depressive Disorder Diagnosis.

出版信息

IEEE Trans Med Imaging. 2023 Oct;42(10):3012-3024. doi: 10.1109/TMI.2023.3274351. Epub 2023 Oct 2.

Abstract

The pathophysiology of major depressive disorder (MDD) has been demonstrated to be highly associated with the dysfunctional integration of brain activity. Existing studies only fuse multi-connectivity information in a one-shot approach and ignore the temporal property of functional connectivity. A desired model should utilize the rich information in multiple connectivities to help improve the performance. In this study, we develop a multi-connectivity representation learning framework to integrate multi-connectivity topological representation from structural connectivity, functional connectivity and dynamic functional connectivities for automatic diagnosis of MDD. Briefly, structural graph, static functional graph and dynamic functional graphs are first computed from the diffusion magnetic resonance imaging (dMRI) and resting state functional magnetic resonance imaging (rsfMRI). Secondly, a novel Multi-Connectivity Representation Learning Network (MCRLN) approach is developed to integrate the multiple graphs with modules of structural-functional fusion and static-dynamic fusion. We innovatively design a Structural-Functional Fusion (SFF) module, which decouples graph convolution to capture modality-specific features and modality-shared features separately for an accurate brain region representation. To further integrate the static graphs and dynamic functional graphs, a novel Static-Dynamic Fusion (SDF) module is developed to pass the important connections from static graphs to dynamic graphs via attention values. Finally, the performance of the proposed approach is comprehensively examined with large cohorts of clinical data, which demonstrates its effectiveness in classifying MDD patients. The sound performance suggests the potential of the MCRLN approach for the clinical use in diagnosis. The code is available at https://github.com/LIST-KONG/MultiConnectivity-master.

摘要

重度抑郁症(MDD)的病理生理学已被证明与大脑活动的功能失调整合高度相关。现有研究仅采用一次性方法融合多连通性信息,而忽略了功能连通性的时间特性。理想的模型应该利用多种连通性中的丰富信息来帮助提高性能。在这项研究中,我们开发了一种多连通性表示学习框架,用于整合结构连通性、功能连通性和动态功能连通性的多连通性拓扑表示,以自动诊断 MDD。简而言之,首先从弥散磁共振成像(dMRI)和静息态功能磁共振成像(rsfMRI)中计算结构图、静态功能图和动态功能图。其次,开发了一种新颖的多连通性表示学习网络(MCRLN)方法,用于整合多个图,包括结构-功能融合模块和静态-动态融合模块。我们创新性地设计了结构-功能融合(SFF)模块,它将图卷积解耦,分别捕获模态特异性特征和模态共享特征,以实现准确的脑区表示。为了进一步整合静态图和动态功能图,开发了新颖的静态-动态融合(SDF)模块,通过注意力值将静态图中的重要连接传递到动态图中。最后,使用大量临床数据全面检查了所提出方法的性能,证明了其在分类 MDD 患者方面的有效性。出色的性能表明了 MCRLN 方法在诊断中的临床应用潜力。代码可在 https://github.com/LIST-KONG/MultiConnectivity-master 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验