IEEE Trans Med Imaging. 2024 Mar;43(3):1045-1059. doi: 10.1109/TMI.2023.3327283. Epub 2024 Mar 5.
Functional connectivity (FC) networks based on resting-state functional magnetic imaging (rs-fMRI) are reliable and sensitive for brain disorder diagnosis. However, most existing methods are limited by using a single template, which may be insufficient to reveal complex brain connectivities. Furthermore, these methods usually neglect the complementary information between static and dynamic brain networks, and the functional divergence among different brain regions, leading to suboptimal diagnosis performance. To address these limitations, we propose a novel multi-graph cross-attention based region-aware feature fusion network (MGCA-RAFFNet) by using multi-template for brain disorder diagnosis. Specifically, we first employ multi-template to parcellate the brain space into different regions of interest (ROIs). Then, a multi-graph cross-attention network (MGCAN), including static and dynamic graph convolutions, is developed to explore the deep features contained in multi-template data, which can effectively analyze complex interaction patterns of brain networks for each template, and further adopt a dual-view cross-attention (DVCA) to acquire complementary information. Finally, to efficiently fuse multiple static-dynamic features, we design a region-aware feature fusion network (RAFFNet), which is beneficial to improve the feature discrimination by considering the underlying relations among static-dynamic features in different brain regions. Our proposed method is evaluated on both public ADNI-2 and ABIDE-I datasets for diagnosing mild cognitive impairment (MCI) and autism spectrum disorder (ASD). Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art methods. Our source code is available at https://github.com/mylbuaa/MGCA-RAFFNet.
基于静息态功能磁共振成像(rs-fMRI)的功能连接(FC)网络可用于脑疾病的诊断,具有较高的可靠性和敏感性。然而,大多数现有的方法都受到单一模板的限制,可能无法充分揭示复杂的脑连接。此外,这些方法通常忽略了静态和动态脑网络之间的互补信息,以及不同脑区之间的功能发散,导致诊断性能不佳。为了解决这些限制,我们提出了一种新的基于多图交叉注意的区域感知特征融合网络(MGCA-RAFFNet),通过使用多模板进行脑疾病诊断。具体来说,我们首先使用多模板将脑空间分割成不同的感兴趣区域(ROIs)。然后,开发了一个多图交叉注意网络(MGCAN),包括静态和动态图卷积,以探索多模板数据中包含的深层特征,该网络可以有效地分析每个模板中脑网络的复杂交互模式,并进一步采用双视图交叉注意(DVCA)来获取互补信息。最后,为了有效地融合多个静态-动态特征,我们设计了一个区域感知特征融合网络(RAFFNet),通过考虑不同脑区的静态-动态特征之间的内在关系,有利于提高特征的辨别能力。我们的方法在公共 ADNI-2 和 ABIDE-I 数据集上进行了评估,用于诊断轻度认知障碍(MCI)和自闭症谱系障碍(ASD)。大量实验证明,我们的方法优于现有的方法。我们的源代码可在 https://github.com/mylbuaa/MGCA-RAFFNet 上获取。