Suppr超能文献

多粒度图卷积网络用于重度抑郁症识别。

Multi-Granularity Graph Convolution Network for Major Depressive Disorder Recognition.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:559-569. doi: 10.1109/TNSRE.2023.3311458. Epub 2024 Feb 2.

Abstract

Major depressive disorder (MDD) is the most common psychological disease. To improve the recognition accuracy of MDD, more and more machine learning methods have been proposed to mining EEG features, i.e. typical brain functional patterns and recognition methods that are closely related to depression using resting EEG signals. Most existing methods typically utilize threshold methods to filter weak connections in the brain functional connectivity network (BFCN) and construct quantitative statistical features of brain function to measure the BFCN. However, these thresholds may excessively remove weak connections with functional relevance, which is not conducive to discovering potential hidden patterns in weak connections. In addition, statistical features cannot describe the topological structure features and information network propagation patterns of the brain's different functional regions. To solve these problems, we propose a novel MDD recognition method based on a multi-granularity graph convolution network (MGGCN). On the one hand, this method applies multiple sets of different thresholds to build a multi-granularity functional neural network, which can remove noise while fully retaining valuable weak connections. On the other hand, this method utilizes graph neural network to learn the topological structure features and brain saliency patterns of changes between brain functional regions on the multi-granularity functional neural network. Experimental results on the benchmark datasets validate the superior performance and time complexity of MGGCN. The analysis shows that as the granularity increases, the connectivity defects in the right frontal(RF) and right temporal (RT) regions, left temporal(LT) and left posterior(LP) regions increase. The brain functional connections in these regions can serve as potential biomarkers for MDD recognition.

摘要

重度抑郁症(MDD)是最常见的心理疾病。为了提高 MDD 的识别准确率,越来越多的机器学习方法被提出用于挖掘 EEG 特征,即使用静息 EEG 信号挖掘与抑郁密切相关的典型脑功能模式和识别方法。大多数现有方法通常利用阈值方法来过滤脑功能连接网络(BFCN)中的弱连接,并构建脑功能的定量统计特征来测量 BFCN。然而,这些阈值可能会过度去除具有功能相关性的弱连接,不利于发现弱连接中的潜在隐藏模式。此外,统计特征无法描述大脑不同功能区域的拓扑结构特征和信息网络传播模式。为了解决这些问题,我们提出了一种基于多粒度图卷积网络(MGGCN)的新型 MDD 识别方法。一方面,该方法应用多组不同的阈值来构建多粒度功能神经网络,既能去除噪声,又能充分保留有价值的弱连接。另一方面,该方法利用图神经网络学习多粒度功能神经网络上脑功能区域之间的拓扑结构特征和大脑显著性模式的变化。基准数据集上的实验结果验证了 MGGCN 的优越性能和时间复杂度。分析表明,随着粒度的增加,右侧额(RF)和右侧颞(RT)区域、左侧颞(LT)和左侧后(LP)区域的连接缺陷增加。这些区域的脑功能连接可以作为 MDD 识别的潜在生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验