Suppr超能文献

超大 G 蛋白对玉米和水稻的农艺性状和抗逆性有显著影响。

Extra-large G proteins have extra-large effects on agronomic traits and stress tolerance in maize and rice.

机构信息

Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA.

Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA.

出版信息

Trends Plant Sci. 2023 Sep;28(9):1033-1044. doi: 10.1016/j.tplants.2023.04.005. Epub 2023 May 7.

Abstract

Heterotrimeric G proteins - comprising Gα, Gβ, and Gγ subunits - are ubiquitous elements in eukaryotic cell signaling. Plant genomes contain both canonical Gα subunit genes and a family of plant-specific extra-large G protein genes (XLGs) that encode proteins consisting of a domain with Gα-like features downstream of a long N-terminal domain. In this review we summarize phenotypes modulated by the canonical Gα and XLG proteins of arabidopsis and highlight recent studies in maize and rice that reveal dramatic phenotypic consequences of XLG clustered regularly interspaced short palindromic repeats (CRISPR) mutagenesis in these important crop species. XLGs have both redundant and specific roles in the control of agronomically relevant plant architecture and resistance to both abiotic and biotic stresses. We also point out areas of current controversy, suggest future research directions, and propose a revised, phylogenetically-based nomenclature for XLG protein genes.

摘要

三聚体 G 蛋白——由 Gα、Gβ 和 Gγ 亚基组成——是真核细胞信号转导中普遍存在的元件。植物基因组包含典型的 Gα 亚基基因和一系列植物特异性特大 G 蛋白基因(XLGs),这些基因编码的蛋白质由下游具有 Gα 样特征的结构域和长 N 端结构域组成。在这篇综述中,我们总结了拟南芥中典型的 Gα 和 XLG 蛋白调节的表型,并强调了最近在玉米和水稻中的研究,这些研究揭示了 XLG 簇在这些重要作物物种中频繁出现的短回文重复(CRISPR)诱变的显著表型后果。XLGs 在控制与农艺相关的植物结构和对非生物和生物胁迫的抗性方面具有冗余和特定的作用。我们还指出了当前争议的领域,提出了未来的研究方向,并提出了 XLG 蛋白基因的修订的、基于系统发育的命名法。

相似文献

1
Extra-large G proteins have extra-large effects on agronomic traits and stress tolerance in maize and rice.
Trends Plant Sci. 2023 Sep;28(9):1033-1044. doi: 10.1016/j.tplants.2023.04.005. Epub 2023 May 7.
2
An atypical heterotrimeric Gα and its interactome suggest an extra-large role in overcoming abiotic and biotic stress.
Physiol Mol Biol Plants. 2023 Oct;29(10):1543-1561. doi: 10.1007/s12298-023-01378-6. Epub 2023 Nov 1.
4
Extra-Large G Proteins Expand the Repertoire of Subunits in Arabidopsis Heterotrimeric G Protein Signaling.
Plant Physiol. 2015 Sep;169(1):512-29. doi: 10.1104/pp.15.00251. Epub 2015 Jul 8.
5
Arabidopsis extra-large G proteins (XLGs) regulate root morphogenesis.
Plant J. 2008 Jan;53(2):248-63. doi: 10.1111/j.1365-313X.2007.03335.x. Epub 2007 Nov 12.
6
Flexible functional interactions between G-protein subunits contribute to the specificity of plant responses.
Plant J. 2020 Apr;102(2):207-221. doi: 10.1111/tpj.14714. Epub 2020 Mar 17.
7
Quantitative morphological phenomics of rice G protein mutants portend autoimmunity.
Dev Biol. 2020 Jan 1;457(1):83-90. doi: 10.1016/j.ydbio.2019.09.007. Epub 2019 Sep 18.
8
EXTRA-LARGE G PROTEINs Interact with E3 Ligases PUB4 and PUB2 and Function in Cytokinin and Developmental Processes.
Plant Physiol. 2017 Feb;173(2):1235-1246. doi: 10.1104/pp.16.00816. Epub 2016 Dec 16.

引用本文的文献

2
A molecular dynamics study of membrane positioning for 7-transmembrane RGS proteins to modulate G-protein-mediated signaling in plants.
Comput Struct Biotechnol J. 2025 Apr 11;27:1529-1537. doi: 10.1016/j.csbj.2025.04.013. eCollection 2025.
4
Biggest of tinies: natural variation in seed size and mineral distribution in the ancient crop tef [ (Zucc.) Trotter].
Front Plant Sci. 2024 Dec 12;15:1485819. doi: 10.3389/fpls.2024.1485819. eCollection 2024.
5
Integrated GWAS, linkage, and transcriptome analysis to identify genetic loci and candidate genes for photoperiod sensitivity in maize.
Front Plant Sci. 2024 Sep 16;15:1441288. doi: 10.3389/fpls.2024.1441288. eCollection 2024.
7
An atypical heterotrimeric Gα and its interactome suggest an extra-large role in overcoming abiotic and biotic stress.
Physiol Mol Biol Plants. 2023 Oct;29(10):1543-1561. doi: 10.1007/s12298-023-01378-6. Epub 2023 Nov 1.
8
An emerging role of heterotrimeric G-proteins in nodulation and nitrogen sensing.
Planta. 2023 Oct 17;258(5):101. doi: 10.1007/s00425-023-04251-8.

本文引用的文献

1
Arabidopsis EXTRA-LARGE G PROTEIN 1 (XLG1) functions together with XLG2 and XLG3 in PAMP-triggered MAPK activation and immunity.
J Integr Plant Biol. 2023 Mar;65(3):825-837. doi: 10.1111/jipb.13391. Epub 2022 Dec 31.
2
G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom.
Int J Mol Sci. 2022 Jun 11;23(12):6544. doi: 10.3390/ijms23126544.
3
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms.
Plants (Basel). 2022 May 27;11(11):1430. doi: 10.3390/plants11111430.
4
Heterotrimeric G Protein Signaling in Abiotic Stress.
Plants (Basel). 2022 Mar 25;11(7):876. doi: 10.3390/plants11070876.
5
Distribution and the evolutionary history of G-protein components in plant and algal lineages.
Plant Physiol. 2022 Jun 27;189(3):1519-1535. doi: 10.1093/plphys/kiac153.
6
Rice extra-large G proteins play pivotal roles in controlling disease resistance and yield-related traits.
New Phytol. 2022 Apr;234(2):607-617. doi: 10.1111/nph.17997. Epub 2022 Feb 15.
7
Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting.
Plant Biotechnol J. 2022 Mar;20(3):426-436. doi: 10.1111/pbi.13780. Epub 2022 Feb 15.
9
Water stress resilient cereal crops: Lessons from wild relatives.
J Integr Plant Biol. 2022 Feb;64(2):412-430. doi: 10.1111/jipb.13222.
10
Chilling tolerance in rice: Past and present.
J Plant Physiol. 2022 Jan;268:153576. doi: 10.1016/j.jplph.2021.153576. Epub 2021 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验