Suppr超能文献

优化 3DCT 图像配准以应对碳离子前列腺放射治疗中的分次间变化。

Optimizing 3DCT image registration for interfractional changes in carbon-ion prostate radiotherapy.

机构信息

National Institutes for Quantum Science and Technology, Quantum Life and Medical Science Directorate, Institute for Quantum Medical Science, Inage-ku, Chiba, 263-8555, Japan.

Corporate Research and Development Center, Toshiba Corporation, Kanagawa, 212-8582, Japan.

出版信息

Sci Rep. 2023 May 8;13(1):7448. doi: 10.1038/s41598-023-34339-w.

Abstract

To perform setup procedures including both positional and dosimetric information, we developed a CT-CT rigid image registration algorithm utilizing water equivalent pathlength (WEPL)-based image registration and compared the resulting dose distribution with those of two other algorithms, intensity-based image registration and target-based image registration, in prostate cancer radiotherapy using the carbon-ion pencil beam scanning technique. We used the data of the carbon ion therapy planning CT and the four-weekly treatment CTs of 19 prostate cancer cases. Three CT-CT registration algorithms were used to register the treatment CTs to the planning CT. Intensity-based image registration uses CT voxel intensity information. Target-based image registration uses target position on the treatment CTs to register it to that on the planning CT. WEPL-based image registration registers the treatment CTs to the planning CT using WEPL values. Initial dose distributions were calculated using the planning CT with the lateral beam angles. The treatment plan parameters were optimized to administer the prescribed dose to the PTV on the planning CT. Weekly dose distributions using the three different algorithms were calculated by applying the treatment plan parameters to the weekly CT data. Dosimetry, including the dose received by 95% of the clinical target volume (CTV-D95), rectal volumes receiving > 20 Gy (RBE) (V20), > 30 Gy (RBE) (V30), and > 40 Gy (RBE) (V40), were calculated. Statistical significance was assessed using the Wilcoxon signed-rank test. Interfractional CTV displacement over all patients was 6.0 ± 2.7 mm (19.3 mm maximum standard amount). WEPL differences between the planning CT and the treatment CT were 1.2 ± 0.6 mm-HO (< 3.9 mm-HO), 1.7 ± 0.9 mm-HO (< 5.7 mm-HO) and 1.5 ± 0.7 mm-HO (< 3.6 mm-HO maxima) with the intensity-based image registration, target-based image registration, and WEPL-based image registration, respectively. For CTV coverage, the D95 values on the planning CT were > 95% of the prescribed dose in all cases. The mean CTV-D95 values were 95.8 ± 11.5% and 98.8 ± 1.7% with the intensity-based image registration and target-based image registration, respectively. The WEPL-based image registration was CTV-D95 to 99.0 ± 0.4% and rectal Dmax to 51.9 ± 1.9 Gy (RBE) compared to 49.4 ± 9.1 Gy (RBE) with intensity-based image registration and 52.2 ± 1.8 Gy (RBE) with target-based image registration. The WEPL-based image registration algorithm improved the target coverage from the other algorithms and reduced rectal dose from the target-based image registration, even though the magnitude of the interfractional variation was increased.

摘要

为了执行包括位置和剂量信息的设置程序,我们开发了一种基于水等效路径长度(WEPL)的 CT-CT 刚性图像配准算法,并利用该算法比较了碳离子铅笔束扫描技术治疗前列腺癌时的三种不同算法(强度基于图像配准和基于目标的图像配准)的剂量分布。我们使用了 19 例前列腺癌病例的碳离子治疗计划 CT 和每周治疗 CT 的数据。使用三种 CT-CT 配准算法将治疗 CT 与计划 CT 配准。基于强度的图像配准使用 CT 体素强度信息。基于目标的图像配准使用治疗 CT 上的目标位置将其与计划 CT 上的目标位置配准。基于 WEPL 的图像配准使用 WEPL 值将治疗 CT 与计划 CT 配准。使用计划 CT 的侧束角度计算初始剂量分布。根据计划 CT 优化治疗计划参数,以向计划 CT 上的 PTV 给予规定剂量。使用三种不同的算法每周计算一次剂量分布,将治疗计划参数应用于每周 CT 数据。计算了包括临床靶区(CTV)95%接收剂量(CTV-D95)、直肠体积接收>20 Gy(RBE)(V20)、>30 Gy(RBE)(V30)和>40 Gy(RBE)(V40)在内的剂量学参数。使用 Wilcoxon 符号秩检验评估统计学意义。所有患者的CTV 位移为 6.0±2.7mm(最大标准量为 19.3mm)。计划 CT 和治疗 CT 之间的 WEPL 差异分别为 1.2±0.6mm-HO(<3.9mm-HO)、1.7±0.9mm-HO(<5.7mm-HO)和 1.5±0.7mm-HO(<3.6mm-HO 最大值),使用基于强度的图像配准、基于目标的图像配准和基于 WEPL 的图像配准。对于 CTV 覆盖,所有病例的计划 CT 上的 D95 值均>规定剂量的 95%。基于强度的图像配准和基于目标的图像配准的平均 CTV-D95 值分别为 95.8±11.5%和 98.8±1.7%。基于 WEPL 的图像配准使 CTV-D95 达到 99.0±0.4%,直肠 Dmax 达到 51.9±1.9 Gy(RBE),而基于强度的图像配准为 49.4±9.1 Gy(RBE),基于目标的图像配准为 52.2±1.8 Gy(RBE)。尽管分次间变化幅度增加,但基于 WEPL 的图像配准算法提高了靶区覆盖率,并降低了靶区的直肠剂量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5349/10167266/334aa6ba0132/41598_2023_34339_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验