一项关于循环脂质和深静脉血栓形成的两样本孟德尔随机化研究。

A two-sample Mendelian randomization study of circulating lipids and deep venous thrombosis.

机构信息

Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.

出版信息

Sci Rep. 2023 May 8;13(1):7432. doi: 10.1038/s41598-023-34726-3.

Abstract

In view of the current debate about the relationship between lipids and deep venous thrombosis (DVT) in clinical studies, a two-sample Mendelian randomization (MR) study was conducted to clarify the effects of five circulating lipids (apolipoprotein A1, apolipoprotein B, low-density lipoprotein, high-density lipoprotein and triglycerides) on DVT from the perspective of genetic inheritance. Five lipids (exposure) were analysed by MR with DVT (outcome) from two different data sources. For the analysis, we used inverse variance weighting and a weighted mode, weighted median, simple mode and MR-Egger regression to analyse the effect of circulating lipids on DVT. In addition, we used the MR-Egger intercept test, Cochran's Q test and "leave-one-out" sensitivity analysis to evaluate horizontal multiplicity, heterogeneity and stability, respectively, in the analysis. In the analysis, the two-sample Mendelian randomization analysis of five common circulating lipids and DVT showed that common circulating lipids had no causal effect on DVT, which is somewhat inconsistent with the findings of many published observational studies. Based on our results, our two-sample MR analysis failed to detect a statistically significant causal relationship between five common circulating lipids and DVT.

摘要

鉴于目前临床研究中关于脂质与深静脉血栓形成(DVT)之间关系的争论,本研究采用两样本 Mendelian 随机化(MR)研究,从遗传角度阐明五种循环脂质(载脂蛋白 A1、载脂蛋白 B、低密度脂蛋白、高密度脂蛋白和甘油三酯)对 DVT 的影响。使用两种不同数据源的 DVT(结局)对五种脂质(暴露)进行 MR 分析。对于分析,我们使用逆方差加权和加权中位数、简单模型和 MR-Egger 回归来分析循环脂质对 DVT 的影响。此外,我们使用 MR-Egger 截距检验、Cochran's Q 检验和“逐一剔除”敏感性分析分别评估分析中的水平多重性、异质性和稳定性。在分析中,对五种常见循环脂质和 DVT 的两样本 Mendelian 随机化分析表明,常见循环脂质对 DVT 没有因果影响,这与许多已发表的观察性研究结果有些不一致。基于我们的结果,我们的两样本 MR 分析未能检测到五种常见循环脂质与 DVT 之间存在统计学上显著的因果关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e36d/10167313/3ca75e9a9172/41598_2023_34726_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索