Suppr超能文献

源自由领域自适应 (SFDA) 用于保护隐私的癫痫发作亚型分类。

Source-Free Domain Adaptation (SFDA) for Privacy-Preserving Seizure Subtype Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:2315-2325. doi: 10.1109/TNSRE.2023.3274563. Epub 2023 May 19.

Abstract

Electroencephalogram (EEG) based seizure subtype classification is very important in clinical diagnostics. Source-free domain adaptation (SFDA) uses a pre-trained source model, instead of the source data, for privacy-preserving transfer learning. SFDA is useful in seizure subtype classification, which can protect the privacy of the source patients, while reducing the amount of labeled calibration data for a new patient. This paper introduces semi-supervised transfer boosting (SS-TrBoosting), a boosting-based SFDA approach for seizure subtype classification. We further extend it to unsupervised transfer boosting (U-TrBoosting) for unsupervised SFDA, i.e., the new patient does not need any labeled EEG data. Experiments on three public seizure datasets demonstrated that SS-TrBoosting and U-TrBoosting outperformed multiple classical and state-of-the-art machine learning approaches in cross-dataset/cross-patient seizure subtype classification.

摘要

基于脑电图(EEG)的癫痫发作亚型分类在临床诊断中非常重要。源自由域自适应(SFDA)使用经过预训练的源模型而不是源数据进行隐私保护的迁移学习。SFDA 在癫痫发作亚型分类中很有用,它可以保护源患者的隐私,同时减少新患者的带标记校准数据量。本文介绍了基于提升的半监督源自由域自适应(SS-TrBoosting)方法,用于癫痫发作亚型分类。我们进一步将其扩展到无监督源自由域自适应(U-TrBoosting),即新患者不需要任何带标记的 EEG 数据。在三个公共癫痫数据集上的实验表明,SS-TrBoosting 和 U-TrBoosting 在跨数据集/跨患者的癫痫发作亚型分类中优于多种经典和最先进的机器学习方法。

相似文献

4
Privacy-Preserving Domain Adaptation for Motor Imagery-Based Brain-Computer Interfaces.基于运动想象的脑机接口的隐私保护域适应
IEEE Trans Biomed Eng. 2022 Nov;69(11):3365-3376. doi: 10.1109/TBME.2022.3168570. Epub 2022 Oct 19.
5
Multi-Source Decentralized Transfer for Privacy-Preserving BCIs.多源去中心化迁移的隐私保护脑机接口。
IEEE Trans Neural Syst Rehabil Eng. 2022;30:2710-2720. doi: 10.1109/TNSRE.2022.3207494. Epub 2022 Sep 26.
6
Online Privacy-Preserving EEG Classification by Source-Free Transfer Learning.基于无源迁移学习的在线隐私保护 EEG 分类。
IEEE Trans Neural Syst Rehabil Eng. 2024;32:3059-3070. doi: 10.1109/TNSRE.2024.3445115. Epub 2024 Aug 26.
7
Decoupled Unbiased Teacher for Source-Free Domain Adaptive Medical Object Detection.无监督源域自适应医学目标检测的解耦无偏教师。
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7287-7298. doi: 10.1109/TNNLS.2023.3272389. Epub 2024 Jun 3.
8
Mixture of Experts for EEG-Based Seizure Subtype Classification.基于脑电图的癫痫亚型分类的混合专家。
IEEE Trans Neural Syst Rehabil Eng. 2023;31:4781-4789. doi: 10.1109/TNSRE.2023.3337802. Epub 2023 Dec 7.
9
EpilepsyGAN: Synthetic Epileptic Brain Activities With Privacy Preservation.癫痫生成对抗网络:具有隐私保护的合成癫痫脑活动
IEEE Trans Biomed Eng. 2021 Aug;68(8):2435-2446. doi: 10.1109/TBME.2020.3042574. Epub 2021 Jul 16.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验