IEEE Trans Neural Syst Rehabil Eng. 2023;31:2315-2325. doi: 10.1109/TNSRE.2023.3274563. Epub 2023 May 19.
Electroencephalogram (EEG) based seizure subtype classification is very important in clinical diagnostics. Source-free domain adaptation (SFDA) uses a pre-trained source model, instead of the source data, for privacy-preserving transfer learning. SFDA is useful in seizure subtype classification, which can protect the privacy of the source patients, while reducing the amount of labeled calibration data for a new patient. This paper introduces semi-supervised transfer boosting (SS-TrBoosting), a boosting-based SFDA approach for seizure subtype classification. We further extend it to unsupervised transfer boosting (U-TrBoosting) for unsupervised SFDA, i.e., the new patient does not need any labeled EEG data. Experiments on three public seizure datasets demonstrated that SS-TrBoosting and U-TrBoosting outperformed multiple classical and state-of-the-art machine learning approaches in cross-dataset/cross-patient seizure subtype classification.
基于脑电图(EEG)的癫痫发作亚型分类在临床诊断中非常重要。源自由域自适应(SFDA)使用经过预训练的源模型而不是源数据进行隐私保护的迁移学习。SFDA 在癫痫发作亚型分类中很有用,它可以保护源患者的隐私,同时减少新患者的带标记校准数据量。本文介绍了基于提升的半监督源自由域自适应(SS-TrBoosting)方法,用于癫痫发作亚型分类。我们进一步将其扩展到无监督源自由域自适应(U-TrBoosting),即新患者不需要任何带标记的 EEG 数据。在三个公共癫痫数据集上的实验表明,SS-TrBoosting 和 U-TrBoosting 在跨数据集/跨患者的癫痫发作亚型分类中优于多种经典和最先进的机器学习方法。