Suppr超能文献

跨患者癫痫分类的无监督领域自适应。

Unsupervised domain adaptation for cross-patient seizure classification.

机构信息

Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

出版信息

J Neural Eng. 2023 Nov 9;20(6). doi: 10.1088/1741-2552/ad0859.

Abstract

. Epileptic seizure is a chronic neurological disease affecting millions of patients. Electroencephalogram (EEG) is the gold standard in epileptic seizure classification. However, its low signal-to-noise ratio, strong non-stationarity, and large individual difference nature make it difficult to directly extend the seizure classification model from one patient to another. This paper considers multi-source unsupervised domain adaptation for cross-patient EEG-based seizure classification, i.e. there are multiple source patients with labeled EEG data, which are used to label the EEG trials of a new patient.. We propose an source domain selection (SDS)-global domain adaptation (GDA)-target agent subdomain adaptation (TASA) approach, which includes SDS to filter out dissimilar source domains, GDA to align the overall distributions of the selected source domains and the target domain, and TASA to identify the most similar source domain to the target domain so that its labels can be utilized.. Experiments on two public seizure datasets demonstrated that SDS-GDA-TASA outperformed 13 existing approaches in unsupervised cross-patient seizure classification.. Our approach could save clinicians plenty of time in labeling EEG data for epilepsy patients, greatly increasing the efficiency of seizure diagnostics.

摘要

癫痫发作是一种影响数百万患者的慢性神经系统疾病。脑电图 (EEG) 是癫痫发作分类的金标准。然而,其低信噪比、强非平稳性和个体差异大的特点使得很难直接将发作分类模型从一个患者扩展到另一个患者。本文考虑了基于多源无监督域自适应的跨患者 EEG 发作分类,即有多个带有标记 EEG 数据的源患者,用于标记新患者的 EEG 试验。我们提出了一种源域选择 (SDS)-全局域自适应 (GDA)-目标代理子域自适应 (TASA) 方法,该方法包括 SDS 来过滤不相似的源域、GDA 来对齐所选源域和目标域的总体分布,以及 TASA 来识别与目标域最相似的源域,以便可以利用其标签。在两个公共癫痫数据集上的实验表明,SDS-GDA-TASA 在无监督跨患者癫痫发作分类中优于 13 种现有方法。我们的方法可以为癫痫患者的 EEG 数据标记节省临床医生大量时间,极大地提高癫痫诊断的效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验