Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
J Neural Eng. 2023 Nov 9;20(6). doi: 10.1088/1741-2552/ad0859.
. Epileptic seizure is a chronic neurological disease affecting millions of patients. Electroencephalogram (EEG) is the gold standard in epileptic seizure classification. However, its low signal-to-noise ratio, strong non-stationarity, and large individual difference nature make it difficult to directly extend the seizure classification model from one patient to another. This paper considers multi-source unsupervised domain adaptation for cross-patient EEG-based seizure classification, i.e. there are multiple source patients with labeled EEG data, which are used to label the EEG trials of a new patient.. We propose an source domain selection (SDS)-global domain adaptation (GDA)-target agent subdomain adaptation (TASA) approach, which includes SDS to filter out dissimilar source domains, GDA to align the overall distributions of the selected source domains and the target domain, and TASA to identify the most similar source domain to the target domain so that its labels can be utilized.. Experiments on two public seizure datasets demonstrated that SDS-GDA-TASA outperformed 13 existing approaches in unsupervised cross-patient seizure classification.. Our approach could save clinicians plenty of time in labeling EEG data for epilepsy patients, greatly increasing the efficiency of seizure diagnostics.
癫痫发作是一种影响数百万患者的慢性神经系统疾病。脑电图 (EEG) 是癫痫发作分类的金标准。然而,其低信噪比、强非平稳性和个体差异大的特点使得很难直接将发作分类模型从一个患者扩展到另一个患者。本文考虑了基于多源无监督域自适应的跨患者 EEG 发作分类,即有多个带有标记 EEG 数据的源患者,用于标记新患者的 EEG 试验。我们提出了一种源域选择 (SDS)-全局域自适应 (GDA)-目标代理子域自适应 (TASA) 方法,该方法包括 SDS 来过滤不相似的源域、GDA 来对齐所选源域和目标域的总体分布,以及 TASA 来识别与目标域最相似的源域,以便可以利用其标签。在两个公共癫痫数据集上的实验表明,SDS-GDA-TASA 在无监督跨患者癫痫发作分类中优于 13 种现有方法。我们的方法可以为癫痫患者的 EEG 数据标记节省临床医生大量时间,极大地提高癫痫诊断的效率。