Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho 2-15, Yokosuka, 237-0061, Japan.
Department of Geology and Mineralogy, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
Sci Rep. 2023 May 9;13(1):7117. doi: 10.1038/s41598-023-34301-w.
Nanometer-sized crystals (nanolites) play an important role in controlling eruptions by affecting the viscosity of magmas and inducing bubble nucleation. We present detailed microscopic and nanoscopic petrographic analyses of nanolite-bearing and nanolite-free pumice from the 2021 eruption of Fukutoku-Oka-no-Ba, Japan. The nanolite mineral assemblage includes biotite, which is absent from the phenocryst mineral assemblage, and magnetite and clinopyroxene, which are observed as phenocrysts. The boundary between the nanolite-bearing brown glass and nanolite-free colorless glass is either sharp or gradational, and the sharp boundaries also appear sharp under the transmitted electron microscope. X-ray absorption fine structure (XAFS) analysis of the volcanic glass revealed that the nanolite-free colorless glass records an oxygen fugacity of QFM + 0.98 (log units), whereas the nanolite-bearing brown glass records a higher apparent oxygen fugacity (~ QFM + 2). Thermodynamic modelling using MELTS indicates that higher oxygen fugacities increase the liquidus temperature and thus induced the crystallization of magnetite nanolites. The hydrous nanolite mineral assemblage and glass oxygen fugacity estimates suggest that an oxidizing fluid supplied by a hot mafic magma induced nanolite crystallization in the magma reservoir, before the magma fragmentation. The oxidation-induced nanolite crystallization then enhanced heterogeneous bubble nucleation, resulting in convection in the magma reservoir and triggering the eruption.
纳米级晶体(纳米石)通过影响岩浆的粘度和诱导气泡成核,在控制喷发中起着重要作用。我们对日本 2021 年福徳岡之場火山喷发的含纳米石和无纳米石的浮岩进行了详细的微观和纳米岩石学分析。纳米石矿物组合包括在斑晶矿物组合中不存在的黑云母,以及作为斑晶存在的磁铁矿和单斜辉石。含纳米石的棕色玻璃和无纳米石的无色玻璃之间的边界要么是陡的,要么是渐变的,而在透射电子显微镜下,陡边界也显得很陡。火山玻璃的 X 射线吸收精细结构(XAFS)分析表明,无纳米石的无色玻璃记录的氧逸度为 QFM + 0.98(对数单位),而含纳米石的棕色玻璃记录的氧逸度较高(~QFM + 2)。使用 MELTS 的热力学模拟表明,较高的氧逸度会提高液相线温度,从而诱导磁铁矿纳米石的结晶。含水的纳米石矿物组合和玻璃氧逸度估计表明,在岩浆破碎之前,来自热基性岩浆的氧化流体在岩浆库中诱导了纳米石结晶。氧化诱导的纳米石结晶随后增强了异质气泡成核,导致岩浆库中的对流,并引发喷发。