IEEE J Biomed Health Inform. 2023 Aug;27(8):4006-4017. doi: 10.1109/JBHI.2023.3274789. Epub 2023 Aug 7.
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms. However, achieving high pixel-wise accuracy, complete topology structure and robustness to various contrast variations are critical and challenging, and most existing methods focus only on achieving one or two of these aspects. In this paper, we present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach. Specifically, we compute a multiscale affinity field for each pixel, capturing its semantic relationships with neighboring pixels in the predicted mask image. This field represents the local geometry of vessel segments of different sizes, allowing us to learn spatial- and scale-aware adaptive weights to strengthen vessel features. We evaluate our AFN on four different types of vascular datasets: X-ray angiography coronary vessel dataset (XCAD), portal vein dataset (PV), digital subtraction angiography cerebrovascular vessel dataset (DSA) and retinal vessel dataset (DRIVE). Extensive experimental results demonstrate that our AFN outperforms the state-of-the-art methods in terms of both higher accuracy and topological metrics, while also being more robust to various contrast changes.
血管分割在许多医学图像应用中至关重要,例如检测冠状动脉狭窄、视网膜血管疾病和脑动脉瘤。然而,实现高精度的像素级、完整的拓扑结构和对各种对比度变化的鲁棒性是至关重要和具有挑战性的,大多数现有方法仅关注实现其中一个或两个方面。在本文中,我们提出了一种新的方法,即亲和特征强化网络(AFN),它使用对对比度不敏感的多尺度亲和方法联合建模几何形状和细化像素级分割特征。具体来说,我们为每个像素计算一个多尺度亲和场,捕捉其与预测掩模图像中相邻像素的语义关系。该场表示不同大小的血管段的局部几何形状,使我们能够学习空间和尺度感知的自适应权重来增强血管特征。我们在四种不同类型的血管数据集上评估了我们的 AFN:X 射线血管造影冠状动脉血管数据集(XCAD)、门静脉数据集(PV)、数字减影血管造影脑血管数据集(DSA)和视网膜血管数据集(DRIVE)。广泛的实验结果表明,我们的 AFN 在准确性和拓扑指标方面均优于最先进的方法,同时对各种对比度变化也更加鲁棒。