The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK.
The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK; School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
Curr Biol. 2023 Jun 5;33(11):2175-2186.e5. doi: 10.1016/j.cub.2023.04.046. Epub 2023 May 9.
Most eukaryotes respire oxygen, using it to generate biomass and energy. However, a few organisms have lost the capacity to respire. Understanding how they manage biomass and energy production may illuminate the critical points at which respiration feeds into central carbon metabolism and explain possible routes to its optimization. Here, we use two related fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, as a comparative model system. We show that although S. japonicus does not respire oxygen, unlike S. pombe, it is capable of efficient NADH oxidation, amino acid synthesis, and ATP generation. We probe possible optimization strategies through the use of stable isotope tracing metabolomics, mass isotopologue distribution analysis, genetics, and physiological experiments. S. japonicus appears to have optimized cytosolic NADH oxidation via glycerol-3-phosphate synthesis. It runs a fully bifurcated TCA pathway, sustaining amino acid production. Finally, we propose that it has optimized glycolysis to maintain high ATP/ADP ratio, in part by using the pentose phosphate pathway as a glycolytic shunt, reducing allosteric inhibition of glycolysis and supporting biomass generation. By comparing two related organisms with vastly different metabolic strategies, our work highlights the versatility and plasticity of central carbon metabolism in eukaryotes, illuminating critical adaptations supporting the preferential use of glycolysis over oxidative phosphorylation.
大多数真核生物呼吸氧气,利用氧气来生成生物量和能量。然而,有一些生物已经失去了呼吸的能力。了解它们如何管理生物量和能量生产,可能会揭示呼吸作用如何融入到中心碳代谢的关键点,并解释优化呼吸作用的可能途径。在这里,我们使用两个相关的裂殖酵母,即 Schizosaccharomyces pombe 和 Schizosaccharomyces japonicus,作为一个比较模型系统。我们表明,尽管 S. japonicus 不像 S. pombe 那样呼吸氧气,但它能够有效地进行 NADH 氧化、氨基酸合成和 ATP 生成。我们通过使用稳定同位素示踪代谢组学、质量同位素分布分析、遗传学和生理实验来探究可能的优化策略。S. japonicus 似乎通过甘油-3-磷酸合成来优化细胞质 NADH 氧化。它运行一个完全分叉的三羧酸 (TCA) 途径,维持氨基酸的产生。最后,我们提出它通过戊糖磷酸途径作为糖酵解的分流来优化糖酵解,以维持高的 ATP/ADP 比,从而减少糖酵解的变构抑制,支持生物量的生成。通过比较两种具有截然不同代谢策略的相关生物,我们的工作强调了真核生物中心碳代谢的多功能性和可塑性,阐明了支持优先使用糖酵解而不是氧化磷酸化的关键适应。