The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK.
Nat Commun. 2023 Sep 8;14(1):5544. doi: 10.1038/s41467-023-41347-x.
Cellular metabolism relies on just a few redox cofactors. Selective compartmentalization may prevent competition between metabolic reactions requiring the same cofactor. Is such compartmentalization necessary for optimal cell function? Is there an optimal compartment size? Here we probe these fundamental questions using peroxisomal compartmentalization of the last steps of lysine and histidine biosynthesis in the fission yeast Schizosaccharomyces japonicus. We show that compartmentalization of these NAD dependent reactions together with a dedicated NADH/NAD recycling enzyme supports optimal growth when an increased demand for anabolic reactions taxes cellular redox balance. In turn, compartmentalization constrains the size of individual organelles, with larger peroxisomes accumulating all the required enzymes but unable to support both biosynthetic reactions at the same time. Our reengineering and physiological experiments indicate that compartmentalized biosynthetic reactions are sensitive to the size of the compartment, likely due to scaling-dependent changes within the system, such as enzyme packing density.
细胞代谢依赖于少数几种氧化还原辅助因子。选择性区室化可能可以防止需要相同辅助因子的代谢反应之间的竞争。这种区室化对于细胞的最佳功能是必需的吗?是否存在最佳的区室大小?在这里,我们使用裂殖酵母 Schizosaccharomyces japonicus 中赖氨酸和组氨酸生物合成的最后几步的过氧化物酶体区室化来探究这些基本问题。我们表明,这些 NAD 依赖性反应的区室化以及专门的 NADH/NAD 循环酶的存在,当细胞的氧化还原平衡因合成代谢反应的需求增加而受到影响时,支持最佳的生长。反过来,区室化限制了单个细胞器的大小,较大的过氧化物酶体积累了所有必需的酶,但不能同时支持这两种生物合成反应。我们的重新设计和生理实验表明,区室化的生物合成反应对区室的大小很敏感,这可能是由于系统内的依赖于比例的变化,例如酶的堆积密度。