Suppr超能文献

基于放射组学分析的肺立体定向消融放疗后患者肺纤维化与肺癌复发的早期鉴别

Radiomic analysis for early differentiation of lung cancer recurrence from fibrosis in patients treated with lung stereotactic ablative radiotherapy.

机构信息

Department of Physics, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.

BC Cancer-Kelowna, Canada.

出版信息

Phys Med Biol. 2023 Aug 7;68(16). doi: 10.1088/1361-6560/acd431.

Abstract

. The development of radiation-induced fibrosis after stereotactic ablative radiotherapy (SABR) can obscure follow-up images and delay detection of a local recurrence in early-stage lung cancer patients. The objective of this study was to develop a radiomics model for computer-assisted detection of local recurrence and fibrosis for an earlier timepoint (<1 year) after the SABR treatment.. This retrospective clinical study included CT images (= 107) of 66 patients treated with SABR. A z-score normalization technique was used for radiomic feature standardization across scanner protocols. The training set for the radiomics model consisted of CT images (66 patients; 22 recurrences and 44 fibrosis) obtained at 24 months (median) follow-up. The test set included CT-images of 41 patients acquired at 5-12 months follow-up. Combinations of four widely used machine learning techniques (support vector machines, gradient boosting, random forests (RF), and logistic regression) and feature selection methods (Relief feature scoring, maximum relevance minimum redundancy, mutual information maximization, forward feature selection, and LASSO) were investigated. Pyradiomics was used to extract 106 radiomic features from the CT-images for feature selection and classification.. An RF + LASSO model scored the highest in terms of AUC (0.87) and obtained a sensitivity of 75% and a specificity of 88% in identifying a local recurrence in the test set. In the training set, 86% accuracy was achieved using five-fold cross-validation. Delong's test indicated that AUC achieved by the RF+LASSO is significantly better than 11 other machine learning models presented here. The top three radiomic features: interquartile range (first order), Cluster Prominence (GLCM), and Autocorrelation (GLCM), were revealed as differentiating a recurrence from fibrosis with this model.. The radiomics model selected, out of multiple machine learning and feature selection algorithms, was able to differentiate a recurrence from fibrosis in earlier follow-up CT-images with a high specificity rate and satisfactory sensitivity performance.

摘要

立体定向消融放疗(SABR)后放射性纤维化的发展可能会使随访图像模糊,并延迟早期肺癌患者局部复发的检测。本研究的目的是开发一种放射组学模型,用于计算机辅助检测 SABR 治疗后<1 年的局部复发和纤维化。

这项回顾性临床研究纳入了 66 例接受 SABR 治疗的患者的 CT 图像(n=107)。使用 z 分数归一化技术对不同扫描协议的放射组学特征进行标准化。放射组学模型的训练集由 24 个月(中位数)随访时获得的 CT 图像(66 例患者;22 例复发和 44 例纤维化)组成。测试集包括 41 例患者在 5-12 个月随访时获得的 CT 图像。研究中考察了四种广泛使用的机器学习技术(支持向量机、梯度提升、随机森林(RF)和逻辑回归)和特征选择方法(Relief 特征评分、最大相关性最小冗余、互信息最大化、前向特征选择和 LASSO)的组合。使用 Pyradiomics 从 CT 图像中提取 106 个放射组学特征进行特征选择和分类。

在测试集中,RF+LASSO 模型的 AUC 评分最高(0.87),对识别局部复发的敏感性为 75%,特异性为 88%。在训练集中,使用五重交叉验证实现了 86%的准确率。DeLong 检验表明,RF+LASSO 获得的 AUC 显著优于本文介绍的 11 种其他机器学习模型。该模型筛选出的前三个放射组学特征:四分位数范围(一阶)、聚类突出度(GLCM)和自相关(GLCM),可用于区分复发与纤维化。

该研究从多种机器学习和特征选择算法中选择出的放射组学模型,能够在早期随访的 CT 图像中以较高的特异性率和令人满意的敏感性区分复发与纤维化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验