Suppr超能文献

基于 W-Net 深度学习的新型组合在神经外科导航中的精确脑移位预测。

Precise Brain-shift Prediction by New Combination of W-Net Deep Learning for Neurosurgical Navigation.

机构信息

Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University.

FUJIFILM Healthcare Corporation.

出版信息

Neurol Med Chir (Tokyo). 2023 Jul 15;63(7):295-303. doi: 10.2176/jns-nmc.2022-0350. Epub 2023 May 11.

Abstract

Brain tissue deformation during surgery significantly reduces the accuracy of image-guided neurosurgeries. We generated updated magnetic resonance images (uMR) in this study to compensate for brain shifts after dural opening using a convolutional neural network (CNN). This study included 248 consecutive patients who underwent craniotomy for initial intra-axial brain tumor removal and correspondingly underwent preoperative MR (pMR) and intraoperative MR (iMR) imaging. Deep learning using CNN to compensate for brain shift was performed using the pMR as input data, and iMR obtained after dural opening as the ground truth. For the tumor center (TC) and the maximum shift position (MSP), statistical analysis using the Wilcoxon signed-rank test was performed between the target registration error (TRE) for the pMR and iMR (i.e., the actual amount of brain shift) and the TRE for the uMR and iMR (i.e., residual error after compensation). The TRE at the TC decreased from 4.14 ± 2.31 mm to 2.31 ± 1.15 mm, and the TRE at the MSP decreased from 9.61 ± 3.16 mm to 3.71 ± 1.98 mm. The Wilcoxon signed-rank test of the pMR TRE and uMR TRE yielded a p-value less than 0.0001 for both the TC and MSP. Using a CNN model, we designed and implemented a new system that compensated for brain shifts after dural opening. Learning pMR and iMR with a CNN demonstrated the possibility of correcting the brain shift after dural opening.

摘要

手术过程中脑组织的变形会显著降低影像引导神经外科手术的准确性。在这项研究中,我们使用卷积神经网络 (CNN) 生成更新的磁共振图像 (uMR),以补偿硬脑膜打开后的脑移位。这项研究包括 248 例连续接受开颅术治疗原发性脑内肿瘤切除的患者,相应地进行术前磁共振成像 (pMR) 和术中磁共振成像 (iMR) 检查。使用 CNN 进行深度学习以补偿脑移位,方法是将 pMR 作为输入数据,将硬脑膜打开后获得的 iMR 作为基准。对于肿瘤中心 (TC) 和最大移位位置 (MSP),使用 Wilcoxon 符号秩检验对 pMR 和 iMR 的目标配准误差 (TRE) (即实际脑移位量)与 uMR 和 iMR 的 TRE (即补偿后的残余误差)之间进行了统计分析。TC 处的 TRE 从 4.14 ± 2.31mm 降低到 2.31 ± 1.15mm,MSP 处的 TRE 从 9.61 ± 3.16mm 降低到 3.71 ± 1.98mm。TC 和 MSP 的 pMR TRE 和 uMR TRE 的 Wilcoxon 符号秩检验的 p 值均小于 0.0001。使用 CNN 模型,我们设计并实现了一种新的系统,该系统可补偿硬脑膜打开后的脑移位。使用 CNN 学习 pMR 和 iMR 显示了纠正硬脑膜打开后脑移位的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/579f/10406456/3691d68df592/1349-8029-63-0295-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验