Suppr超能文献

脑移位补偿术中的图像更新。

Image Updating for Brain Shift Compensation During Resection.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.

Department of Su, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire.

出版信息

Oper Neurosurg (Hagerstown). 2018 Apr 1;14(4):402-411. doi: 10.1093/ons/opx123.

Abstract

BACKGROUND

In open-cranial neurosurgery, preoperative magnetic resonance (pMR) images are typically coregistered for intraoperative guidance. Their accuracy can be significantly degraded by intraoperative brain deformation, especially when resection is involved.

OBJECTIVE

To produce model updated MR (uMR) images to compensate for brain shift that occurred during resection, and evaluate the performance of the image-updating process in terms of accuracy and computational efficiency.

METHODS

In 14 resection cases, intraoperative stereovision image pairs were acquired after dural opening and during resection to generate displacement maps of the surgical field. These data were assimilated by a biomechanical model to create uMR volumes of the evolving surgical field. A tracked stylus provided independent measurements of feature locations to quantify target registration errors (TREs) in the original coregistered pMR and uMR as surgery progressed.

RESULTS

Updated MR TREs were 1.66 ± 0.27 and 1.92 ± 0.49 mm in the 14 cases after dural opening and after partial resection, respectively, compared to 8.48 ± 3.74 and 8.77 ± 4.61 mm for pMR, respectively. The overall computational time for generating uMRs after partial resection was less than 10 min.

CONCLUSION

We have developed an image-updating system to compensate for brain deformation during resection using a computational model with data assimilation of displacements measured with intraoperative stereovision imaging that maintains TREs less than 2 mm on average.

摘要

背景

在开颅神经外科手术中,通常会对术前磁共振(pMR)图像进行配准,以便在术中进行引导。但由于术中脑变形,尤其是在切除过程中,其准确性会显著降低。

目的

生成模型更新磁共振(uMR)图像以补偿切除过程中发生的脑移位,并评估图像更新过程在准确性和计算效率方面的性能。

方法

在 14 例切除病例中,在硬脑膜打开后和切除过程中采集术中立体视觉图像对,以生成手术区域的位移图。这些数据通过生物力学模型进行同化,以创建不断变化的手术区域的 uMR 体数据。跟踪触笔提供特征位置的独立测量值,以量化原始配准 pMR 和 uMR 中目标注册误差(TRE)在手术过程中的变化。

结果

在 14 例病例中,硬脑膜打开后和部分切除后,更新的磁共振 TRE 分别为 1.66 ± 0.27 和 1.92 ± 0.49mm,而 pMR 分别为 8.48 ± 3.74 和 8.77 ± 4.61mm。部分切除后生成 uMR 的总计算时间不到 10 分钟。

结论

我们开发了一种使用基于数据同化的计算模型来补偿切除过程中脑变形的图像更新系统,该模型使用术中立体视觉成像测量的位移,平均 TRE 保持在 2mm 以内。

相似文献

1
Image Updating for Brain Shift Compensation During Resection.
Oper Neurosurg (Hagerstown). 2018 Apr 1;14(4):402-411. doi: 10.1093/ons/opx123.
2
Intraoperative image updating for brain shift following dural opening.
J Neurosurg. 2017 Jun;126(6):1924-1933. doi: 10.3171/2016.6.JNS152953. Epub 2016 Sep 9.
3
Intraoperative imaging technology to maximise extent of resection for glioma.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD012788. doi: 10.1002/14651858.CD012788.pub2.
5
Image guided surgery for the resection of brain tumours.
Cochrane Database Syst Rev. 2014 Jan 28;2014(1):CD009685. doi: 10.1002/14651858.CD009685.pub2.
8
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
9
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
10
Cooling for cerebral protection during brain surgery.
Cochrane Database Syst Rev. 2015 Jan 28;1(1):CD006638. doi: 10.1002/14651858.CD006638.pub3.

引用本文的文献

1
Porcine-human glioma xenograft model. Immunosuppression and model reproducibility.
Cancer Treat Res Commun. 2024;38:100789. doi: 10.1016/j.ctarc.2024.100789. Epub 2024 Jan 13.
2
Model-based image updating in deep brain stimulation with assimilation of deep brain sparse data.
Med Phys. 2023 Dec;50(12):7904-7920. doi: 10.1002/mp.16578. Epub 2023 Jul 7.
3
Precise Brain-shift Prediction by New Combination of W-Net Deep Learning for Neurosurgical Navigation.
Neurol Med Chir (Tokyo). 2023 Jul 15;63(7):295-303. doi: 10.2176/jns-nmc.2022-0350. Epub 2023 May 11.
5
Intraoperative use of heads-up display in skull base surgery.
Neurosurg Focus Video. 2022 Jan 1;6(1):V2. doi: 10.3171/2021.10.FOCVID21177. eCollection 2022 Jan.
6
Model-Based Image Updating for Brain Shift in Deep Brain Stimulation Electrode Placement Surgery.
IEEE Trans Biomed Eng. 2020 Dec;67(12):3542-3552. doi: 10.1109/TBME.2020.2990669. Epub 2020 Nov 19.
7
Automatic segmentation of brain tumor resections in intraoperative ultrasound images using U-Net.
J Med Imaging (Bellingham). 2020 May;7(3):031503. doi: 10.1117/1.JMI.7.3.031503. Epub 2020 Feb 18.
8
Improving target localization during trans-oral surgery with use of intraoperative imaging.
Int J Comput Assist Radiol Surg. 2019 May;14(5):885-893. doi: 10.1007/s11548-018-01907-9. Epub 2019 Feb 7.

本文引用的文献

1
Intraoperative image updating for brain shift following dural opening.
J Neurosurg. 2017 Jun;126(6):1924-1933. doi: 10.3171/2016.6.JNS152953. Epub 2016 Sep 9.
2
Near Real-Time Computer Assisted Surgery for Brain Shift Correction Using Biomechanical Models.
IEEE J Transl Eng Health Med. 2014 Apr 30;2. doi: 10.1109/JTEHM.2014.2327628.
3
Efficient stereo image geometrical reconstruction at arbitrary camera settings from a single calibration.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):440-7. doi: 10.1007/978-3-319-10404-1_55.
5
Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration.
Med Image Anal. 2014 Oct;18(7):1169-83. doi: 10.1016/j.media.2014.07.001. Epub 2014 Jul 9.
6
More accurate neuronavigation data provided by biomechanical modeling instead of rigid registration.
J Neurosurg. 2014 Jun;120(6):1477-83. doi: 10.3171/2013.12.JNS131165. Epub 2014 Jan 24.
7
Biomechanical model as a registration tool for image-guided neurosurgery: evaluation against BSpline registration.
Ann Biomed Eng. 2013 Nov;41(11):2409-25. doi: 10.1007/s10439-013-0838-y. Epub 2013 Jun 15.
8
AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI.
Neuroimage. 2013 Jan 15;65:97-108. doi: 10.1016/j.neuroimage.2012.08.009. Epub 2012 Aug 14.
9
Intraoperative brain shift compensation: accounting for dural septa.
IEEE Trans Biomed Eng. 2011 Mar;58(3):499-508. doi: 10.1109/TBME.2010.2093896. Epub 2010 Nov 22.
10
Real-time prediction of brain shift using nonlinear finite element algorithms.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):300-7. doi: 10.1007/978-3-642-04271-3_37.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验