Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
Department of Su, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire.
Oper Neurosurg (Hagerstown). 2018 Apr 1;14(4):402-411. doi: 10.1093/ons/opx123.
In open-cranial neurosurgery, preoperative magnetic resonance (pMR) images are typically coregistered for intraoperative guidance. Their accuracy can be significantly degraded by intraoperative brain deformation, especially when resection is involved.
To produce model updated MR (uMR) images to compensate for brain shift that occurred during resection, and evaluate the performance of the image-updating process in terms of accuracy and computational efficiency.
In 14 resection cases, intraoperative stereovision image pairs were acquired after dural opening and during resection to generate displacement maps of the surgical field. These data were assimilated by a biomechanical model to create uMR volumes of the evolving surgical field. A tracked stylus provided independent measurements of feature locations to quantify target registration errors (TREs) in the original coregistered pMR and uMR as surgery progressed.
Updated MR TREs were 1.66 ± 0.27 and 1.92 ± 0.49 mm in the 14 cases after dural opening and after partial resection, respectively, compared to 8.48 ± 3.74 and 8.77 ± 4.61 mm for pMR, respectively. The overall computational time for generating uMRs after partial resection was less than 10 min.
We have developed an image-updating system to compensate for brain deformation during resection using a computational model with data assimilation of displacements measured with intraoperative stereovision imaging that maintains TREs less than 2 mm on average.
在开颅神经外科手术中,通常会对术前磁共振(pMR)图像进行配准,以便在术中进行引导。但由于术中脑变形,尤其是在切除过程中,其准确性会显著降低。
生成模型更新磁共振(uMR)图像以补偿切除过程中发生的脑移位,并评估图像更新过程在准确性和计算效率方面的性能。
在 14 例切除病例中,在硬脑膜打开后和切除过程中采集术中立体视觉图像对,以生成手术区域的位移图。这些数据通过生物力学模型进行同化,以创建不断变化的手术区域的 uMR 体数据。跟踪触笔提供特征位置的独立测量值,以量化原始配准 pMR 和 uMR 中目标注册误差(TRE)在手术过程中的变化。
在 14 例病例中,硬脑膜打开后和部分切除后,更新的磁共振 TRE 分别为 1.66 ± 0.27 和 1.92 ± 0.49mm,而 pMR 分别为 8.48 ± 3.74 和 8.77 ± 4.61mm。部分切除后生成 uMR 的总计算时间不到 10 分钟。
我们开发了一种使用基于数据同化的计算模型来补偿切除过程中脑变形的图像更新系统,该模型使用术中立体视觉成像测量的位移,平均 TRE 保持在 2mm 以内。