Biondi Margherita, Choi Min-Jae, Wang Zhibo, Wei Mingyang, Lee Seungjin, Choubisa Hitarth, Sagar Laxmi Kishore, Sun Bin, Baek Se-Woong, Chen Bin, Todorović Petar, Najarian Amin Morteza, Sedighian Rasouli Armin, Nam Dae-Hyun, Vafaie Maral, Li Yuguang C, Bertens Koen, Hoogland Sjoerd, Voznyy Oleksandr, García de Arquer F Pelayo, Sargent Edward H
Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, M1C 1A4, Canada.
Adv Mater. 2021 Aug;33(33):e2101056. doi: 10.1002/adma.202101056. Epub 2021 Jul 10.
Charge carrier transport in colloidal quantum dot (CQD) solids is strongly influenced by coupling among CQDs. The shape of as-synthesized CQDs results in random orientational relationships among facets in CQD solids, and this limits the CQD coupling strength and the resultant performance of optoelectronic devices. Here, colloidal-phase reconstruction of CQD surfaces, which improves facet alignment in CQD solids, is reported. This strategy enables control over CQD faceting and allows demonstration of enhanced coupling in CQD solids. The approach utilizes post-synthetic resurfacing and unites surface passivation and colloidal stability with a propensity for dots to couple via (100):(100) facets, enabling increased hole mobility. Experimentally, the CQD solids exhibit a 10× increase in measured hole mobility compared to control CQD solids, and enable photodiodes (PDs) exhibiting 70% external quantum efficiency (vs 45% for control devices) and specific detectivity, D* > 10 Jones, each at 1550 nm. The photodetectors feature a 7 ns response time for a 0.01 mm area-the fastest reported for solution-processed short-wavelength infrared PDs.
胶体量子点(CQD)固体中的电荷载流子传输受到量子点间耦合的强烈影响。合成后的CQD形状导致CQD固体中各晶面之间存在随机的取向关系,这限制了CQD的耦合强度以及光电器件的最终性能。在此,报道了CQD表面的胶体相重构,其改善了CQD固体中的晶面对准。该策略能够控制CQD的刻面,并展示出CQD固体中增强的耦合。该方法利用合成后表面重铺,并将表面钝化和胶体稳定性与量子点通过(100):(100)晶面耦合的倾向相结合,从而提高空穴迁移率。实验上,与对照CQD固体相比,CQD固体的测量空穴迁移率提高了10倍,并使光电二极管(PD)在1550nm处的外量子效率达到70%(对照器件为45%),比探测率D* > 10 Jones。该光电探测器在0.01mm²面积下的响应时间为7ns,是溶液处理的短波长红外PD报道中最快的。