Suppr超能文献

质体硫氧还蛋白结构域蛋白为铁硫簇装配和 tRNA 修饰提供硫。

The apicoplast cysteine desulfurase provides sulfur for both iron-sulfur cluster assembly and tRNA modification.

机构信息

Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, United States.

The Johns Hopkins Malaria Research Institute, Baltimore, United States.

出版信息

Elife. 2023 May 11;12:e84491. doi: 10.7554/eLife.84491.

Abstract

Iron-sulfur clusters (FeS) are ancient and ubiquitous protein cofactors that play fundamental roles in many aspects of cell biology. These cofactors cannot be scavenged or trafficked within a cell and thus must be synthesized in any subcellular compartment where they are required. We examined the FeS synthesis proteins found in the relict plastid organelle, called the apicoplast, of the human malaria parasite . Using a chemical bypass method, we deleted four of the FeS pathway proteins involved in sulfur acquisition and cluster assembly and demonstrated that they are all essential for parasite survival. However, the effect that these deletions had on the apicoplast organelle differed. Deletion of the cysteine desulfurase SufS led to disruption of the apicoplast organelle and loss of the organellar genome, whereas the other deletions did not affect organelle maintenance. Ultimately, we discovered that the requirement of SufS for organelle maintenance is not driven by its role in FeS biosynthesis, but rather, by its function in generating sulfur for use by MnmA, a tRNA modifying enzyme that we localized to the apicoplast. Complementation of MnmA and SufS activity with a bacterial MnmA and its cognate cysteine desulfurase strongly suggests that the parasite SufS provides sulfur for both FeS biosynthesis and tRNA modification in the apicoplast. The dual role of parasite SufS is likely to be found in other plastid-containing organisms and highlights the central role of this enzyme in plastid biology.

摘要

铁硫簇(FeS)是古老而普遍存在的蛋白质辅因子,在细胞生物学的许多方面发挥着基础作用。这些辅因子不能在细胞内被清除或运输,因此必须在需要它们的任何亚细胞区室中合成。我们研究了人类疟疾寄生虫遗留的质体细胞器(称为类锥体)中发现的 FeS 合成蛋白。使用化学旁路方法,我们删除了参与硫获取和簇组装的四个 FeS 途径蛋白,并证明它们对寄生虫的生存都是必需的。然而,这些缺失对类锥体细胞器的影响不同。半胱氨酸脱硫酶 SufS 的缺失导致类锥体细胞器的破坏和细胞器基因组的丢失,而其他缺失则不影响细胞器的维持。最终,我们发现 SufS 对细胞器维持的需求不是由其在 FeS 生物合成中的作用驱动的,而是由其在为 MnmA 生成硫中的作用驱动的,MnmA 是一种 tRNA 修饰酶,我们将其定位到类锥体。用细菌 MnmA 和其同源半胱氨酸脱硫酶对 MnmA 和 SufS 活性进行互补强烈表明寄生虫 SufS 为类锥体中的 FeS 生物合成和 tRNA 修饰提供硫。寄生虫 SufS 的双重作用可能在其他含有质体的生物体中发现,并突出了该酶在质体生物学中的核心作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a4/10219651/6d07fdf2fc37/elife-84491-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验