Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2411631121. doi: 10.1073/pnas.2411631121. Epub 2024 Oct 28.
malaria parasites invade and multiply inside red blood cells (RBCs), the most iron-rich compartment in humans. Like all cells, requires nutritional iron to support essential metabolic pathways, but the critical mechanisms of iron acquisition and trafficking during RBC infection have remained obscure. Parasites internalize and liberate massive amounts of heme during large-scale digestion of RBC hemoglobin within an acidic food vacuole (FV) but lack a heme oxygenase to release porphyrin-bound iron. Although most FV heme is sequestered into inert hemozoin crystals, prior studies indicate that trace heme escapes biomineralization and is susceptible to nonenzymatic degradation within the oxidizing FV environment to release labile iron. Parasites retain a homolog of divalent metal transporter 1 (DMT1), a known mammalian iron transporter, but its role in iron acquisition has not been tested. Our phylogenetic studies indicate that DMT1 (PfDMT1) retains conserved molecular features critical for metal transport. We localized this protein to the FV membrane and defined its orientation in an export-competent topology. Conditional knockdown of PfDMT1 expression is lethal to parasites, which display broad cellular defects in iron-dependent functions, including impaired apicoplast biogenesis and mitochondrial polarization. Parasites are selectively rescued from partial PfDMT1 knockdown by supplementation with exogenous iron, but not other metals. These results support a cellular paradigm whereby PfDMT1 is the molecular gatekeeper to essential iron acquisition by blood-stage malaria parasites and suggest that therapeutic targeting of PfDMT1 may be a potent antimalarial strategy.
疟原虫在人类富含铁的红细胞(RBC)内入侵和繁殖。像所有细胞一样,它需要营养铁来支持基本的代谢途径,但在 RBC 感染期间铁的获取和运输的关键机制仍然不清楚。寄生虫在酸性食物泡(FV)内大规模消化 RBC 血红蛋白时,会内化并释放大量血红素,但缺乏血红素加氧酶来释放卟啉结合的铁。虽然大部分 FV 血红素被隔离到无活性的血铁红素晶体中,但之前的研究表明,痕量血红素逃脱生物矿化,并在氧化 FV 环境中易受非酶降解,从而释放出不稳定的铁。寄生虫保留了二价金属转运蛋白 1(DMT1)的同源物,这是一种已知的哺乳动物铁转运蛋白,但它在疟原虫铁获取中的作用尚未得到测试。我们的系统发育研究表明,PfDMT1(PfDMT1)保留了对金属转运至关重要的保守分子特征。我们将这种蛋白定位到 FV 膜上,并确定了其在出口功能完备的拓扑结构中的定向。PfDMT1 表达的条件敲低对寄生虫是致命的,寄生虫在铁依赖性功能方面表现出广泛的细胞缺陷,包括质体生物发生和线粒体极化受损。寄生虫通过补充外源性铁而不是其他金属从部分 PfDMT1 敲低中得到选择性拯救。这些结果支持了一种细胞范例,即 PfDMT1 是血期疟原虫获取必需铁的分子守门员,并表明靶向 PfDMT1 可能是一种有效的抗疟策略。