Blackwell Amanda Mixon, Jami-Alahmadi Yasaman, Nasamu Armiyaw S, Kudo Shota, Senoo Akinobu, Slam Celine, Tsumoto Kouhei, Wohlschlegel James A, Caaveiro Jose M M, Goldberg Daniel E, Sigala Paul A
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT.
Department of Biological Chemistry, University of California, Los Angeles, CA.
bioRxiv. 2024 Oct 13:2024.05.30.596652. doi: 10.1101/2024.05.30.596652.
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
疟原虫已经进化出不同寻常的代谢适应性,使其能够在富含血红素的人类红细胞内生长。在血液阶段感染期间,疟原虫将大量宿主血红蛋白内化并在消化泡内进行消化。这种大规模的分解代谢过程会产生大量游离血红素,其中大部分会生物矿化形成惰性疟色素。疟原虫还表达一种不同的血红素加氧酶(HO)样蛋白(PfHO),该蛋白缺乏关键的活性位点残基,并且已经失去了典型的HO活性。这种不同寻常的蛋白质在细胞中的作用以及疟原虫保留它的原因一直未知。为了阐明PfHO的功能,我们首先确定了分辨率为2.8 Å的X射线结构,该结构揭示了一种高度α螺旋的折叠,表明其与远源HO具有同源性。定位研究表明PfHO靶向至顶质体细胞器,在那里它被导入并经历N端加工,但保留了大部分带正电的转运肽。我们观察到,条件性敲低PfHO对疟原虫是致命的,疟原虫因顶质体生物发生缺陷和类异戊二烯前体合成受损而死亡。互补和分子相互作用研究揭示了PfHO带正电的N端的重要作用,它选择性地与顶质体基因组以及参与核酸代谢和基因表达的酶结合。PfHO敲低导致顶质体编码的RNA水平出现特异性缺陷,但DNA水平没有缺陷。这些研究揭示了PfHO在顶质体维持中的重要功能,并表明它从其在祖先叶绿体中典型的血红素降解功能被重新利用,以在细胞器基因表达中发挥关键的适应性作用。