Suppr超能文献

用于评估基于 N 抗原的 COVID-19 诊断检测分析性能的试剂和病毒基准面板。

A Reagent and Virus Benchmarking Panel for a Uniform Analytical Performance Assessment of N Antigen-Based Diagnostic Tests for COVID-19.

机构信息

PATH, Seattle, Washington, USA.

出版信息

Microbiol Spectr. 2023 Jun 15;11(3):e0373122. doi: 10.1128/spectrum.03731-22. Epub 2023 May 11.

Abstract

Rapid diagnostic tests (RDTs) that detect antigen indicative of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can help in making quick health care decisions and regularly monitoring groups at risk of infection. With many RDT products entering the market, it is important to rapidly evaluate their relative performance. Comparison of clinical evaluation study results is challenged by protocol design variations and study populations. Laboratory assays were developed to quantify nucleocapsid (N) and spike (S) SARS-CoV-2 antigens. Quantification of the two antigens in nasal eluates confirmed higher abundance of N than S antigen. The median concentration of N antigen was 10 times greater than S per genome equivalent. The N antigen assay was used in combination with quantitative reverse transcription (RT)-PCR to qualify a panel composed of recombinant antigens, inactivated virus, and clinical specimen pools. This benchmarking panel was applied to evaluate the analytical performance of the SD Biosensor Standard Q COVID-19 antigen (Ag) test, Abbott Panbio COVID-19 Ag rapid test, Abbott BinaxNOW COVID-19 Ag test, and the LumiraDx SARS-CoV-2 Ag test. The four tests displayed different sensitivities toward the different panel members, but all performed best with the clinical specimen pool. The concentration for a 90% probability of detection across the four tests ranged from 21 to 102 pg/mL of N antigen in the extracted sample. Benchmarking panels provide a quick way to verify the baseline performance of a diagnostic and enable direct comparisons between diagnostic tests. This study reports the results for severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) nucleocapsid (N) and spike (S) antigen quantification assays and their performance against clinical reverse transcription (RT)-PCR results, thus describing an open-access quantification method for two important SARS-CoV-2 protein analytes. Characterized N antigen panels were used to evaluate the limits of detection of four different rapid tests for SARS-CoV-2 against multiple sources of nucleocapsid antigen, demonstrating proof-of-concept materials and methodology to evaluate SARS-CoV-2 rapid antigen detection tests. Quantification of N antigen was used to characterize the relationship between viral count and antigen concentration among clinical samples and panel members of both clinical sample and viral culture origin. This contributes to a deeper understanding of protein antigen and molecular analytes and presents analytical methods complementary to clinical evaluation for characterizing the performance of both laboratory-based and point-of-care rapid diagnostics for SARS-CoV-2.

摘要

快速诊断检测(RDT)可检测严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)感染的抗原,有助于快速做出医疗保健决策,并定期监测感染风险群体。随着许多 RDT 产品进入市场,对其相对性能进行快速评估非常重要。由于方案设计差异和研究人群不同,比较临床评估研究结果具有挑战性。实验室检测方法用于定量核衣壳(N)和刺突(S)SARS-CoV-2 抗原。对鼻洗脱物中的两种抗原进行定量,证实 N 抗原的丰度高于 S 抗原。每个基因组当量的 N 抗原中位数浓度是 S 抗原的 10 倍。N 抗原检测法与定量逆转录(RT)-PCR 相结合,用于鉴定由重组抗原、灭活病毒和临床标本池组成的检测面板。该基准面板用于评估 SD Biosensor Standard Q COVID-19 抗原(Ag)检测、Abbott Panbio COVID-19 Ag 快速检测、Abbott BinaxNOW COVID-19 Ag 检测和 LumiraDx SARS-CoV-2 Ag 检测的分析性能。这四种检测方法对不同的检测面板成员表现出不同的敏感性,但在临床标本池的表现均最佳。四种检测方法在提取样本中 N 抗原的 90%检测概率浓度范围为 21 至 102 pg/ml。基准面板为验证诊断的基本性能提供了一种快速方法,并能在诊断检测之间进行直接比较。本研究报告了严重急性呼吸系统综合征冠状病毒-2(SARS-CoV-2)核衣壳(N)和刺突(S)抗原定量检测及其与临床逆转录(RT)-PCR 结果的性能对比,从而描述了一种用于 SARS-CoV-2 两种重要蛋白分析物的公开获取定量方法。经表征的 N 抗原检测面板用于评估针对多种核衣壳抗原来源的四种不同 SARS-CoV-2 快速检测方法的检测限,为 SARS-CoV-2 快速抗原检测试验提供了概念验证材料和方法。对临床样本和来自临床样本和病毒培养源的检测面板成员的 N 抗原进行定量,以描述病毒载量与抗原浓度之间的关系。这有助于更深入地了解蛋白抗原和分子分析物,并为基于实验室和即时检测的 SARS-CoV-2 快速诊断检测的性能提供了与临床评估互补的分析方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d04c/10269465/68b8782682f8/spectrum.03731-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验