Center for Spatial Data Science, University of Chicago.
Department of Human Development and Family Studies, Michigan State University.
Psychol Methods. 2023 Apr;28(2):339-358. doi: 10.1037/met0000567.
Empirical studies often demonstrate multiple causal mechanisms potentially involving simultaneous or causally related mediators. However, researchers often use simple mediation models to understand the processes because they do not or cannot measure other theoretically relevant mediators. In such cases, another potentially relevant but unobserved mediator potentially confounds the observed mediator, thereby biasing the estimated direct and indirect effects associated with the observed mediator and threatening corresponding inferences. Additionally, researchers may not know the extent to which their measures are reliable, and accordingly, measurement error may bias estimated effects and mislead statistical inferences. Given these threats, we explore how the omission of an unobserved mediator and/or using variables with measurement error biases estimates and affects inferences associated with the observed mediator. Then, building off Frank's impact threshold for a confounding variable (ITCV), we propose a correlation-based sensitivity analysis. Lastly, we provide an R package ConMed to assess the robustness of mediation inferences given the omission of an unobserved, confounding mediator and/or measurement error. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
实证研究经常表明存在多种潜在因果机制,这些机制可能涉及同时或因果相关的中介变量。然而,研究人员通常使用简单的中介模型来理解这些过程,因为他们无法或无法测量其他理论上相关的中介变量。在这种情况下,另一个潜在相关但未被观察到的中介变量可能会混淆被观察到的中介变量,从而使与被观察到的中介变量相关的估计直接和间接效应产生偏差,并威胁到相应的推断。此外,研究人员可能不知道他们的测量方法的可靠性程度,因此,测量误差可能会使估计的效应产生偏差,并误导统计推断。鉴于这些威胁,我们探讨了未被观察到的中介变量的遗漏以及/或者使用具有测量误差的变量会如何偏差与被观察到的中介变量相关的估计值并影响推断。然后,我们基于弗兰克(Frank)的混杂变量影响阈值(ITCV),提出了一种基于相关性的敏感性分析方法。最后,我们提供了一个 R 包 ConMed,用于评估在遗漏未被观察到的混杂中介变量和/或测量误差的情况下,对中介推断的稳健性。(PsycInfo 数据库记录(c)2023 APA,保留所有权利)。