Suppr超能文献

使用巨正则非平衡候选蒙特卡罗方法加速基于片段的药物发现

Accelerating fragment-based drug discovery using grand canonical nonequilibrium candidate Monte Carlo.

作者信息

Poole William G, Samways Marley L, Branduardi Davide, Taylor Richard D, Verdonk Marcel L, Essex Jonathan W

机构信息

School of Chemistry and Chemical Engineering, University of Southampton, Southampton, SO17 1BJ, UK.

Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK.

出版信息

Nat Commun. 2025 Jul 4;16(1):6198. doi: 10.1038/s41467-025-60561-3.

Abstract

Fragment-based drug discovery is a popular approach in the early stages of drug development. Computational tools are integral to these campaigns, providing a route to library design, virtual screening, the identification of putative small-molecule binding sites, the elucidation of binding geometries, and the prediction of accurate binding affinities. In this context, molecular dynamics-based simulations are increasingly popular, but often limited by sampling issues. Here, we develop grand canonical nonequilibrium candidate Monte Carlo (GCNCMC) to overcome these limitations. GCNCMC attempts the insertion and deletion of fragments to, or from, a region of interest; each proposed move is subject to a rigorous acceptance test based on the thermodynamic properties of the system. We demonstrate that fragment-based GCNCMC efficiently finds occluded fragment binding sites and accurately samples multiple binding modes. Finally, binding affinities of fragments are successfully calculated without the need for restraints, the handling of multiple binding modes, or symmetry corrections.

摘要

基于片段的药物发现是药物开发早期阶段一种流行的方法。计算工具是这些研究活动不可或缺的一部分,为文库设计、虚拟筛选、确定假定的小分子结合位点、阐明结合几何结构以及预测准确的结合亲和力提供了途径。在这种情况下,基于分子动力学的模拟越来越受欢迎,但常常受到采样问题的限制。在这里,我们开发了巨正则非平衡候选蒙特卡罗(GCNCMC)方法来克服这些限制。GCNCMC尝试将片段插入到感兴趣的区域或从该区域删除片段;每次提出的移动都要根据系统的热力学性质进行严格的接受测试。我们证明基于片段的GCNCMC能够有效地找到隐蔽的片段结合位点,并准确地对多种结合模式进行采样。最后,无需约束、处理多种结合模式或进行对称校正,就能成功计算片段的结合亲和力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed21/12227770/b5cefd017a91/41467_2025_60561_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验