Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
Nat Methods. 2023 Jun;20(6):935-944. doi: 10.1038/s41592-023-01871-6. Epub 2023 May 11.
Learning is thought to involve changes in glutamate receptors at synapses, submicron structures that mediate communication between neurons in the central nervous system. Due to their small size and high density, synapses are difficult to resolve in vivo, limiting our ability to directly relate receptor dynamics to animal behavior. Here we developed a combination of computational and biological methods to overcome these challenges. First, we trained a deep-learning image-restoration algorithm that combines the advantages of ex vivo super-resolution and in vivo imaging modalities to overcome limitations specific to each optical system. When applied to in vivo images from transgenic mice expressing fluorescently labeled glutamate receptors, this restoration algorithm super-resolved synapses, enabling the tracking of behavior-associated synaptic plasticity with high spatial resolution. This method demonstrates the capabilities of image enhancement to learn from ex vivo data and imaging techniques to improve in vivo imaging resolution.
学习被认为涉及突触处谷氨酸受体的变化,这些亚微米结构介导中枢神经系统中神经元之间的通讯。由于其体积小且密度高,突触在体内难以解析,限制了我们将受体动力学与动物行为直接联系起来的能力。在这里,我们开发了一种组合的计算和生物学方法来克服这些挑战。首先,我们训练了一种深度学习图像恢复算法,该算法结合了离体超分辨率和体内成像模式的优势,克服了每种光学系统的特定限制。当应用于表达荧光标记谷氨酸受体的转基因小鼠的体内图像时,这种恢复算法对突触进行了超分辨,从而能够以高空间分辨率跟踪与行为相关的突触可塑性。该方法展示了图像增强从离体数据中学习的能力和成像技术提高体内成像分辨率的能力。