Suppr超能文献

一种用于区分内感受注意和外感受注意的机器学习方法。

A machine learning approach towards the differentiation between interoceptive and exteroceptive attention.

机构信息

Department of Psychological Clinical Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada.

Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, Washington, USA.

出版信息

Eur J Neurosci. 2023 Jul;58(2):2523-2546. doi: 10.1111/ejn.16045. Epub 2023 May 24.

Abstract

Interoception, the representation of the body's internal state, plays a central role in emotion, motivation and wellbeing. Interoceptive sensibility, the ability to engage in sustained interoceptive awareness, is particularly relevant for mental health but is exclusively measured via self-report, without methods for objective measurement. We used machine learning to classify interoceptive sensibility by contrasting using data from a randomized control trial of interoceptive training, with functional magnetic resonance imaging assessment before and after an 8-week intervention (N = 44 scans). The neuroimaging paradigm manipulated attention targets (breath vs. visual stimuli) and reporting demands (active reporting vs. passive monitoring). Machine learning achieved high accuracy in distinguishing between interoceptive and exteroceptive attention, both for within-session classification (80% accuracy) and out-of-sample classification (70% accuracy), revealing the reliability of the predictions. We then explored the classifier potential for 'reading out' mental states in a 3-min sustained interoceptive attention task. Participants were classified as actively engaged about half of the time, during which interoceptive training enhanced their ability to sustain interoceptive attention. These findings demonstrate that interoceptive and exteroceptive attention is distinguishable at the neural level; these classifiers may help to demarcate periods of interoceptive focus, with implications for developing an objective marker for interoceptive sensibility in mental health research.

摘要

内感受,即对身体内部状态的感知,在情绪、动机和幸福感中起着核心作用。内感受敏感性,即持续进行内感受意识的能力,对心理健康尤为重要,但只能通过自我报告来测量,而没有客观测量的方法。我们使用机器学习通过对比内感受训练的随机对照试验数据,以及 8 周干预前后的功能磁共振成像评估(N=44 次扫描)来对其进行分类。神经影像学范式通过操纵注意目标(呼吸与视觉刺激)和报告要求(主动报告与被动监测)来实现。机器学习在区分内感受和外感受注意力方面取得了很高的准确性,无论是在会话内分类(80%的准确率)还是样本外分类(70%的准确率),这揭示了预测的可靠性。然后,我们探索了分类器在 3 分钟持续内感受注意力任务中“读取”心理状态的潜力。参与者大约有一半的时间被归类为积极参与,在此期间,内感受训练增强了他们维持内感受注意力的能力。这些发现表明,内感受和外感受注意力在神经水平上是可区分的;这些分类器可能有助于区分内感受焦点的时期,这对开发心理健康研究中内感受敏感性的客观标志物具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13fb/10727490/1278f5631ab9/nihms-1944108-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验