Kumar Manoj, Anderson Michael J, Antony James W, Baldassano Christopher, Brooks Paula P, Cai Ming Bo, Chen Po-Hsuan Cameron, Ellis Cameron T, Henselman-Petrusek Gregory, Huberdeau David, Hutchinson J Benjamin, Li Y Peeta, Lu Qihong, Manning Jeremy R, Mennen Anne C, Nastase Samuel A, Richard Hugo, Schapiro Anna C, Schuck Nicolas W, Shvartsman Michael, Sundaram Narayanan, Suo Daniel, Turek Javier S, Turner David, Vo Vy A, Wallace Grant, Wang Yida, Williams Jamal A, Zhang Hejia, Zhu Xia, Capotă Mihai, Cohen Jonathan D, Hasson Uri, Li Kai, Ramadge Peter J, Turk-Browne Nicholas B, Willke Theodore L, Norman Kenneth A
Princeton Neuroscience Institute, Princeton University, Princeton, NJ.
Work done while at Parallel Computing Lab, Intel Corporation, Santa Clara, CA.
Apert Neuro. 2021;1(4). doi: 10.52294/31bb5b68-2184-411b-8c00-a1dacb61e1da. Epub 2022 Feb 16.
Functional magnetic resonance imaging (fMRI) offers a rich source of data for studying the neural basis of cognition. Here, we describe the Brain Imaging Analysis Kit (BrainIAK), an open-source, free Python package that provides computationally optimized solutions to key problems in advanced fMRI analysis. A variety of techniques are presently included in BrainIAK: intersubject correlation (ISC) and intersubject functional connectivity (ISFC), functional alignment via the shared response model (SRM), full correlation matrix analysis (FCMA), a Bayesian version of representational similarity analysis (BRSA), event segmentation using hidden Markov models, topographic factor analysis (TFA), inverted encoding models (IEMs), an fMRI data simulator that uses noise characteristics from real data (fmrisim), and some emerging methods. These techniques have been optimized to leverage the efficiencies of high-performance compute (HPC) clusters, and the same code can be se amlessly transferred from a laptop to a cluster. For each of the aforementioned techniques, we describe the data analysis problem that the technique is meant to solve and how it solves that problem; we also include an example Jupyter notebook for each technique and an annotated bibliography of papers that have used and/or described that technique. In addition to the sections describing various analysis techniques in BrainIAK, we have included sections describing the future applications of BrainIAK to real-time fMRI, tutorials that we have developed and shared online to facilitate learning the techniques in BrainIAK, computational innovations in BrainIAK, and how to contribute to BrainIAK. We hope that this manuscript helps readers to understand how BrainIAK might be useful in their research.
功能磁共振成像(fMRI)为研究认知的神经基础提供了丰富的数据来源。在此,我们介绍脑成像分析工具包(BrainIAK),这是一个开源的免费Python软件包,它为高级fMRI分析中的关键问题提供了计算优化的解决方案。BrainIAK目前包含多种技术:受试者间相关性(ISC)和受试者间功能连接性(ISFC)、通过共享响应模型(SRM)进行功能对齐、全相关矩阵分析(FCMA)、贝叶斯版本的表征相似性分析(BRSA)、使用隐马尔可夫模型的事件分割、地形因子分析(TFA)、反向编码模型(IEM)、一个使用真实数据噪声特征的fMRI数据模拟器(fmrisim)以及一些新兴方法。这些技术已经过优化,以利用高性能计算(HPC)集群的效率,并且相同的代码可以从笔记本电脑无缝转移到集群。对于上述每种技术,我们描述了该技术旨在解决的数据分析问题以及它是如何解决该问题的;我们还为每种技术提供了一个示例Jupyter笔记本以及使用和/或描述该技术的论文的注释书目。除了描述BrainIAK中各种分析技术的部分,我们还包括了描述BrainIAK在实时fMRI中的未来应用的部分、我们为方便学习BrainIAK中的技术而开发并在线共享的教程、BrainIAK中的计算创新以及如何为BrainIAK做出贡献。我们希望这篇手稿能帮助读者了解BrainIAK在他们的研究中可能如何有用。
Apert Neuro. 2021
PLoS Comput Biol. 2020-1-15
J Neurosci Methods. 2015-8-15
Cochrane Database Syst Rev. 2022-2-1
Front Neuroinform. 2014-1-31
Comput Methods Programs Biomed. 2019-7-19
Nat Commun. 2025-8-23
Commun Psychol. 2025-8-13
Imaging Neurosci (Camb). 2025-5-9
Imaging Neurosci (Camb). 2024-8-6
Imaging Neurosci (Camb). 2024-8-30
J Undergrad Neurosci Educ. 2024-8-31
Nat Commun. 2024-9-17
Elife. 2021-4-22
Biol Psychiatry Cogn Neurosci Neuroimaging. 2021-4
Neuroimage. 2020-11-15
Nat Commun. 2020-6-26