Suppr超能文献

类螺旋面和沃罗诺伊髋关节植入物多孔结构的生物力学效应:使用经实验验证模型的有限元分析

Biomechanical Effects of the Porous Structure of Gyroid and Voronoi Hip Implants: A Finite Element Analysis Using an Experimentally Validated Model.

作者信息

Salaha Zatul Faqihah Mohd, Ammarullah Muhammad Imam, Abdullah Nik Nur Ain Azrin, Aziz Aishah Umairah Abd, Gan Hong-Seng, Abdullah Abdul Halim, Abdul Kadir Mohammed Rafiq, Ramlee Muhammad Hanif

机构信息

Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia.

Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia.

出版信息

Materials (Basel). 2023 Apr 22;16(9):3298. doi: 10.3390/ma16093298.

Abstract

Total hip arthroplasty (THA) is most likely one of the most successful surgical procedures in medicine. It is estimated that three in four patients live beyond the first post-operative year, so appropriate surgery is needed to alleviate an otherwise long-standing suboptimal functional level. However, research has shown that during a complete THA procedure, a solid hip implant inserted in the femur can damage the main arterial supply of the cortex and damage the medullary space, leading to cortical bone resorption. Therefore, this study aimed to design a porous hip implant with a focus on providing more space for better osteointegration, improving the medullary revascularisation and blood circulation of patients. Based on a review of the literature, a lightweight implant design was developed by applying topology optimisation and changing the materials of the implant. Gyroid and Voronoi lattice structures and a solid hip implant (as a control) were designed. In total, three designs of hip implants were constructed by using SolidWorks and nTopology software version 2.31. Point loads were applied at the x, y and z-axis to imitate the stance phase condition. The forces represented were x = 320 N, y = -170 N, and z = -2850 N. The materials that were used in this study were titanium alloys. All of the designs were then simulated by using Marc Mentat software version 2020 (MSC Software Corporation, Munich, Germany) via a finite element method. Analysis of the study on topology optimisation demonstrated that the Voronoi lattice structure yielded the lowest von Mises stress and displacement values, at 313.96 MPa and 1.50 mm, respectively, with titanium alloys as the materials. The results also indicate that porous hip implants have the potential to be implemented for hip implant replacement, whereby the mechanical integrity is still preserved. This result will not only help orthopaedic surgeons to justify the design choices, but could also provide new insights for future studies in biomechanics.

摘要

全髋关节置换术(THA)很可能是医学上最成功的外科手术之一。据估计,四分之三的患者能活过术后第一年,因此需要进行适当的手术来缓解原本长期存在的功能欠佳状况。然而,研究表明,在完整的全髋关节置换手术过程中,植入股骨的坚固髋关节植入物会损害皮质的主要动脉供应并破坏髓腔,导致皮质骨吸收。因此,本研究旨在设计一种多孔髋关节植入物,重点是提供更多空间以实现更好的骨整合,改善患者的髓腔再血管化和血液循环。基于对文献的综述,通过应用拓扑优化和改变植入物材料,开发了一种轻质植入物设计。设计了类螺旋体和沃罗诺伊晶格结构以及一个实心髋关节植入物(作为对照)。总共使用SolidWorks和nTopology软件2.31版构建了三种髋关节植入物设计。在x、y和z轴上施加点载荷以模拟站立期情况。所代表的力为x = 320 N,y = -170 N,z = -2850 N。本研究中使用的材料是钛合金。然后使用Marc Mentat软件2020版(德国慕尼黑MSC软件公司)通过有限元方法对所有设计进行模拟。拓扑优化研究分析表明,以钛合金为材料时,沃罗诺伊晶格结构产生的冯·米塞斯应力和位移值最低,分别为313.96 MPa和1.50 mm。结果还表明,多孔髋关节植入物有潜力用于髋关节植入物置换,同时仍能保持机械完整性。这一结果不仅有助于骨科医生证明设计选择的合理性,还可为未来生物力学研究提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/236d/10179376/fd06f2eda2f1/materials-16-03298-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验